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Abstract 

Retrospective forecasts of temperature, precipitation, and streamflow were generated with the Hydrologic Ensemble 
Forecast Service (HEFS) of the U.S. National Weather Service (NWS) for selected river basins in four NWS River 
Forecast Centers (RFCs), namely the Arkansas-Red Basin RFC (ABRFC), the Colorado Basin RFC (CBRFC), the 
California-Nevada RFC (CNRFC) and the Middle Atlantic RFC (MARFC). The meteorological hindcasts were produced 
with the HEFS Meteorological Ensemble Forecast Processor (MEFP). The MEFP was calibrated with forcing inputs 
from the Global Ensemble Forecast System (GEFS) of the National Centers for Environmental Prediction (NCEP). The 
streamflow hindcasts cover a ~15 year period from 1985-1999 with a forecast horizon of 1-14 days. Retrospective 
forecasts were also produced with the frozen (circa 1997) version of NCEP’s Global Forecast System (GFS).The 
hindcasts were verified conditionally upon forecast lead time, magnitude of the observed and forecast variables, and 
season. Verification results are presented for the temperature and precipitation forecasts from the MEFP and for the 
streamflow forecasts before and after bias-correction with the HEFS Ensemble Postprocessor (EnsPost). This report 
presents the verification results, describes the expected performance and limitations of the HEFS for short- to medium-
range forecasting with the GEFS, identifies the benefits of the GEFS when compared to the frozen GFS, and provides 
recommendations on future research and additional evaluation of the HEFS.     
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1. How to read this report 

This report aims to: 1) provide a comprehensive scientific evaluation of the 

temperature, precipitation, and streamflow forecasts from the Hydrologic Ensemble 

Forecast Service Version 1 (HEFSv1) with forcing inputs from NCEP’s Global Ensemble 

Forecast System (GEFS); 2) benchmark the HEFSv1 with forcing inputs from the GEFS 

against a frozen (circa 1997) version of NCEP’s Global Forecast System (GFS), in order 

to establish the benefits of the GEFS for operational hydrologic forecasting; and 3) 

communicate the strengths and weaknesses of the HEFSv1 and, where necessary, 

recommend specific enhancements or further studies. This section aims to guide readers 

with limited time or experience of ensemble forecasting or verification to the main results 

and conclusions. The following sections are particularly important: 

I. Executive summary and recommendations. This describes the structure of the 

report and the strengths and weakness of the forecasts in non-technical terms;  

II. Section 4.1. This provides a brief description of the study basins. Understanding 

the hydrology of the study basins is central to interpreting the quality of the HEFS 

forecasts and to applying the results more broadly (or understanding the risks of 

extrapolation); 

III. Appendix C. This shows a selection of the paired streamflow forecasts and 

observations from which the verification results were derived. The plots comprise 

the bias-corrected streamflow forecasts with forcing inputs from the Meteorological 

Ensemble Forecast Processor (MEFP). The MEFP was calibrated with raw 

temperature and precipitation forecasts from the GEFS (MEFP-GEFS), the frozen 

GFS (MEFP-GFS) and a conditional or “resampled” climatology (MEFP-CLIM). 

The relative scatter of the observations within the ensemble forecast distribution 

provides some insight into the quality of the streamflow forecasts when using 

different forcing inputs. In general, the streamflow observations should fall 

randomly within the ensemble range. They should not fall consistently in one part 

of the ensemble forecast distribution or outside of the ensemble range;   
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IV. Section 4.4 and Appendix B. In order to understand the remainder of the report, it 

is necessary to consider the desirable attributes of ensemble forecasts and how 

they can be measured. Tutorials on forecast verification can be found in the 

documentation, presentations, and exercises that accompany recent training 

workshops on the HEFS and in the user’s manual of the Ensemble Verification 

System (EVS). Important attributes of forecast quality are briefly described in 

Section 4.4, while Appendix B summarizes the verification measures used in this 

report; and  

V. Section 5.3. The verification results are presented separately for the 

meteorological forecasts and the “raw” streamflow forecasts (which do not include 

streamflow post-processing). In Section 5.2, the raw streamflow forecasts are 

verified against simulated streamflows, in order to establish the potential benefits 

of the MEFP-GEFS forecasts without the impacts of hydrologic biases (the 

simulations and forecasts comprise the same hydrologic biases). In Section 5.3, 

the bias-corrected streamflow forecasts are verified against observed streamflows, 

in order to establish the actual benefits of the MEFP-GEFS forecasts in an 

operational context (where the streamflow bias-correction is often imperfect).  

Some of the verification results are simpler to understand than others. Skill scores 

are generally simpler to understand and to compare between basins, partly because they 

are dimensionless. A skill score measures the fractional improvement of one forecasting 

system relative to another (01, although negative values are possible). For example, 

Figure 5 shows the fractional improvement of the MEFP-GEFS precipitation forecasts 

against sample climatology (an ensemble derived from the full, unconditional, sample of 

historical observations across all available dates). The results are also shown for the 

MEFP-GFS forecasts and for resampled climatology, MEFP-CLIM (an ensemble derived 

from a conditional sample of historical observations; that is, from sampling observations 

in a moving window around the forecast valid date across all historical years). Figure 6 

shows the corresponding results for the MEFP temperature forecasts. Figures 25a/b 

show the skill of the bias-corrected streamflow forecasts with forcing inputs from the 

MEFP-GEFS and the MEFP-GFS. The baseline comprises the uncorrected streamflow 
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forecasts with forcing inputs from resampled climatology, MEFP-CLIM. In addition to the 

overall skill, the contributions from the meteorological forcing and the hydrologic post-

processing are shown separately. The improvement of one forecasting system over 

another can also be expressed as an average gain in forecast lead time (Figure 15). Using 

this approach, Figure 14 compares the MEFP-GEFS precipitation forecasts against the 

MEFP-GFS forecasts, while Figure 16 compares the MEFP-GEFS temperature forecasts 

against the MEFP-GFS forecasts. Figure 26 shows the corresponding results for the bias-

corrected streamflow forecasts. 

It is also important to understand the limitations of this study. First, it does not 

provide any guidance on the calibration or configuration of the HEFS. Such guidance 

would require hindcasting and verification for multiple calibration and configuration 

scenarios. Second, the report covers only a small fraction of the locations and scenarios 

under which the HEFS will be used operationally. It focuses on a pair of basins in each 

RFC, comprising one downstream basin with a single headwater. It does not consider the 

quality of the forecasts in regulated rivers, where the hydrologic errors are often difficult 

to model statistically. Similarly, it does not include rivers with multiple upstream 

contributions or lateral inflows, from which the uncertainties combine and propagate 

downstream. Finally, the report does not explicitly benchmark the HEFS against archived 

operational forecasts, such as the RFC single-valued forecasts, or operational forecast 

products, such as river flood warnings. Scientific evaluation of the HEFS is an ongoing 

activity. It requires an infrastructure for hindcasting, verification and archiving of data, as 

well as communicating verification concepts and results. This report provides an initial 

evaluation only. Further, targeted, evaluations should be conducted by the NWS RFCs in 

collaboration with the Office of Hydrologic Development (OHD). 
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2. Executive summary and recommendations 

 Retrospective forecasts of temperature, precipitation, and streamflow were 

generated with the Hydrologic Ensemble Forecasts Service (HEFS) for a ~15-year 

period between 1985 and 1999. The hindcasts were produced for two basins in 

each of four River Forecast Centers (RFCs), namely the Arkansas-Red Basin RFC 

(ABRFC), the Colorado Basin RFC (CBRFC), the California-Nevada RFC 

(CNRFC) and the Middle Atlantic RFC (MARFC). The precipitation and 

temperature forecasts were generated with the HEFS Meteorological Ensemble 

Forecast Processor (MEFP). The MEFP produces ensemble forecasts of Mean 

Areal Temperature (MAT) and Mean Areal Precipitation (MAP), conditionally upon 

a raw, single-valued, forecast. Here, the MEFP was calibrated with the ensemble 

mean of the Global Ensemble Forecast System (GEFS). The GEFS uses Version 

9.0.1 of the Global Forecast System (GFS), which comprises a horizontal 

resolution of T254 (~55km) for 1-8 days and T190 (~70km) for 9-16 days, together 

with a vertical resolution of L42 (42 vertical levels). In order to benchmark the 

forcing and streamflow hindcasts produced with the GEFS (denoted MEFP-

GEFS), the MEFP was also calibrated with the frozen (circa 1997) version of the 

GFS (denoted MEFP-GFS), and a conditional or “resampled” climatology (denoted 

MEFP-CLIM). The latter involved resampling historical observations in a moving 

window around the forecast valid date. The streamflow forecasts were produced 

with the Community Hydrologic Prediction System (CHPS) and were bias-

corrected with the Ensemble Post-processor (EnsPost). In all cases, the forecast 

time horizon was 1-14 days. 

 The HEFS is being evaluated in several phases. The phased evaluation aims to: 

establish the expected performance and limitations of the HEFS; demonstrate that 

the outputs from the MEFP and the EnsPost are less biased and more skillful than 

the inputs; identify the key factors responsible for forecast error and skill in different 

situations; isolate the contributions from the meteorological and hydrologic 

uncertainties to the overall skill of the streamflow forecasts; establish a baseline 

for enhancements to the HEFS and, where appropriate, to recommend specific 
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enhancements or further studies; and illustrate how hindcasting and verification of 

the HEFS might be conducted in future. The temperature, precipitation, and 

streamflow forecasts were verified with the Ensemble Verification System. The 

results are presented by forecast lead time, season, and magnitude of the 

observed and forecast variables. The precipitation and temperature forecasts were 

verified against observed MAP and MAT, respectively. In order to establish the 

potential benefits of the meteorological forecasts separately from any hydrologic 

biases, the raw streamflow forecasts were verified against simulated flows. In 

addition, the bias-corrected streamflow forecasts were verified against observed 

flows. This allowed the actual benefits of the meteorological forecasts to be 

established in an operational context, where the hydrologic uncertainties may 

outweigh the meteorological uncertainties, and the EnsPost cannot be expected to 

remove all of the hydrologic biases.  

 The correlations between the raw meteorological forecasts and observations are 

preserved or improved by the MEFP at all forecast lead times, in both seasons, 

and at all magnitudes of the observed variable. Also, the MEFP-GEFS forecasts 

consistently improve upon the MEFP-CLIM forecasts. Both are necessary, if not 

sufficient, attributes of reliable and skillful meteorological forecasts. Indeed, the 

MEFP aims to preserve the correlations in the raw, single-valued, forecasts and to 

produce ensemble forecasts that are reliable and no less skillful than resampled 

climatology. 

 In general, the patterns of skill and bias in the MEFP-GFS forecasts are mirrored 

by the MEFP-GEFS forecasts. The MEFP-GEFS forecasts show much higher 

correlations and greater skill in CNRFC than in AB- or CB-RFCs. This is associated 

with the greater predictability of large storms in the California Coastal Ranges 

during the winter months. In MARFC, the MEFP-GEFS precipitation forecasts are 

highly skillful at early forecast lead times, particularly at moderate precipitation 

amounts, but the forecast skill declines more rapidly when compared to CNRFC. 

In keeping with the MEFP-GFS precipitation forecasts, the MEFP-GEFS forecasts 

are consistently less skillful in AB- and CB-RFCs than MA- and CN-RFCs (at least 
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during the first few days). This originates from a combination of reduced 

predictability in the southern plains and in the intermountain region of the western 

U.S., together with residual biases that were not removed by the MEFP. In general, 

both the MEFP-GEFS precipitation forecasts and the MEFP-GFS forecasts are 

unbiased and skillful during the first week, but show much lower skill and higher 

conditional biases during the second week.  

 Despite the broad similarities between the MEFP-GEFS precipitation forecasts and 

the MEFP-GFS forecasts, the MEFP-GEFS forecasts show higher correlations and 

greater skill than the MEFP-GFS forecasts. In AB-, CB- and MA-RFCs, the MEFP-

GEFS forecasts show higher correlations than the MEFP-GFS forecasts at all 

forecast lead times. In CNRFC, the improvements from the MEFP-GEFS are 

greatest after ~three days, as the raw GFS forecasts show similar correlations to 

the raw GEFS forecasts between 1-2 days (~0.8). During the first week, the MEFP-

GEFS precipitation forecasts are consistently more skillful than the MEFP-GFS 

forecasts in AB-, CB- and MA-RFCs. However, after seven days, they are no more 

skillful than climatology, and, in CBRFC, the forecasts of light precipitation are 

somewhat less skillful than climatology. In CNRFC, the MEFP-GEFS precipitation 

forecasts are no more skillful than the MEFP-GFS forecasts between 1-2 days. 

However, during the second week, they are substantially more skillful than the 

MEFP-GFS forecasts, particularly at higher precipitation thresholds. When 

expressed as a net gain in forecast lead time over the period of skillful forcing, the 

MEFP-GEFS forecasts typically add 1-2 days in forecast lead time when compared 

to the MEFP-GFS forecasts.  

 Both the MEFP-GEFS temperature forecasts and the MEFP-GFS temperature 

forecasts improve substantially upon resampled climatology. They also remain 

skillful for longer than the precipitation forecasts. Indeed, the MEFP-GEFS 

temperature forecasts remain skillful throughout the second week. However, in 

keeping with the precipitation forecasts, the benefits of the MEFP-GEFS 

temperature forecasts are generally more pronounced after the first 1-2 days. 

Thus, the errors saturate more quickly in the MEFP-GFS forecasts than the MEFP-
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GEFS forecasts. For example, in the middle portion of the forecast horizon, the 

MEFP-GEFS forecasts show equivalent skill to the MEFP-GFS forecasts, but with 

2-4 days of additional forecast lead time. The greatest improvements occur in CN-

FTSC1 (Fort Seward, CA) and MA-CNNN6 (Cannonsville Reservoir, NY). In these 

basins, when measured against sample climatology, the MEFP-GEFS temperature 

forecasts are ~20% more skillful than the MEFP-GFS forecasts across all 

temperature thresholds. In general, the improvements are smaller at AB-BLKO2 

(Blackwell, OK) and CB-DOLC2 (Dolores, CO). However, during the winter months 

(as well as the summer months at CB-DOLC2), the value added by the MEFP-

GEFS increases when colder temperatures are included in the verification data. 

For example, during the winter months at CB-DOLC2, the mean Continuous 

Ranked Probability Skill Score (CRPSS) is ~0.6 when using the MEFP-GEFS to 

forecast temperatures above -8 C (the 90% exceedence threshold) and ~0.4 when 

using the MEFP-GFS. While accurate forecasts of MAT are generally less 

important for hydrologic modeling than accurate forecasts of MAP, surface 

temperatures are important in determining the accumulation and melting of snow. 

Thus, in snow-dominated basins, such as CB-DOLC2, the additional skill of the 

MEFP-GEFS temperature forecasts may be important for hydrologic modeling.  

 Both the MEFP-GEFS forecast and the MEFP-GFS forecasts comprise a range of 

conditional biases. In particular, there is a tendency for the precipitation forecasts 

to underestimate the Probability of Precipitation (PoP). This lack of reliability also 

effects the MEFP-CLIM forecasts. Indeed, the MEFP forecasts of PoP are 

substantially worse than unconditional climatology in some basins. In order to 

produce reliable forecasts of PoP at a daily accumulation, the forecasts must be 

reliable at a six-hourly accumulation. Furthermore, they must adequately capture 

the statistical dependencies between the six-hourly accumulations. In practice, the 

forecasts of PoP are unreliable at a daily accumulation, while the corresponding 

six-hourly forecasts are reliable, on average. This alludes to a problem with the 

modeling of precipitation intermittency at a six-hourly scale. More specifically, is 

alludes to a problem with the temporal variability of precipitation intermittency in 

the six-hourly MEFP forecasts.  
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Recommendation 1: Accurate modeling of the space-time covariability between 

precipitation and temperature is central to producing reliable meteorological 

forecast at aggregated scales. It is also important for hydrologic forecasting, as 

the outputs from hydrologic models are sensitive to the space-time covariability 

of the inputs. The MEFP uses the “Schaake Shuffle” to reproduce the historical 

space-time covariability of the observed MAT and MAP conditionally upon 

forecast valid date. It does not model these patterns conditionally upon the state 

of the atmosphere. Further investigation is warranted into the limitations of the 

Schaake Shuffle in reproducing the space-time covariability of precipitation and 

temperature, including whether other empirical structures (empirical copulas) 

can generate more realistic patterns. This investigation should consider a range 

of observed and forecast conditions, including moderate and intermittent 

precipitation, but also large and extreme events, where the space-time 

covariability may be substantially different than climatology. 

 Alongside the underestimation of PoP, the MEFP precipitation forecasts 

systematically underestimate the largest observed precipitation amounts. This 

originates from a Type-II conditional bias in the precipitation forecasts (as distinct 

from a Type-I conditional bias or “lack of reliability”). Again, it is apparent in the 

MEFP-GEFS precipitation forecasts, as well as the MEFP-GFS forecasts. In 

general, the conditional bias increases as the forecast skill declines (i.e. 

approaches climatology); hence, it varies with location, season and forecast lead 

time, among other factors. This is understandable, because climatology is, by 

definition, conditionally biased with increasing amounts of observed precipitation. 

At early forecast lead times in CNRFC, the biases are sufficiently small, and the 

spread is sufficiently large, that the highest precipitation totals are generally 

forecast with some, non-zero, probability of occurrence. However, in other basins, 

and at longer forecast lead times, the largest precipitation totals are routinely 

underestimated by as much as the observed precipitation amount. While the 

MEFP-GEFS forecasts show similar conditional biases to the MEFP-GFS 

forecasts, they also comprise more spread in some cases. For example, at AB-

BLKO2, the MEFP-GEFS forecasts are more likely to warn of the highest observed 

precipitation amounts, even if their central tendency is to underestimate. Currently, 
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the MEFP is calibrated with the ensemble mean of the raw GEFS forecasts. Most 

of the skill in the frozen GFS is concentrated in the ensemble mean forecast. 

However, as atmospheric models become more skillful, post-processors may 

benefit from using higher moments, interactions, or even the individual ensemble 

members, providing the sampling uncertainties are reasonably small. 

Recommendation 2: Future work should consider whether the raw temperature 

and precipitation forecasts used by the MEFP (notably the GEFS forecasts) 

contain valuable information in the ensemble spread and higher central 

moments, and how best to leverage this information. In this context, there is a 

trade-off between adding skillful predictors and the need to maintain a 

parsimonious description of the forecast errors. More generally, further work is 

needed on the limitations of statistical post-processing for large and extreme 

events. Here, the desire for unbiasedness must be weighed against the risk of 

obfuscating a weak, but potentially valuable, signal in the raw forecasts. The 

ability to calibrate the MEFP with reasonably small sampling uncertainty is 

important in this context. Thus, future work should leverage all of the available 

GEFS reforecasts and corresponding operational forecasts. 

 In order to understand the benefits of the MEFP-GEFS forcing independently of 

any hydrologic biases, the raw streamflow forecasts were verified against 

simulated flows. In general, both the MEFP-GEFS streamflow forecasts and the 

MEFP-GFS forecasts are substantially more skillful than those with climatological 

forcing. Similarly, when compared to the MEFP-GFS streamflow forecasts, the 

MEFP-GEFS forecasts are consistently more correlated with the simulated 

streamflows and show higher skill. As the hydrologic models respond unevenly to 

meteorological forcing, depending on basin characteristics and antecedent 

conditions, the period over which the MEFP-GEFS forecasts improve upon the 

MEFP-GFS forecasts varies between basins. For example, at AB-BLKO2, the 

streamflow forecasts show a rapid decline in correlation with increasing forecast 

lead time. This originates from a lack of hydrologic persistence at AB-BLKO2 and 

the difficulty in forecasting precipitation beyond the short-range. In contrast, the 

basins in CBRFC are dominated by snow accumulation and melting. Here, much 

of the skill in the streamflow forecasts depends on the hydrologic uncertainties, 
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specifically on the initial conditions in the hydrologic models. However, the timing 

and rate of snowmelt also depends on the accuracy of the temperature forecasts 

during the snowmelt period. When verifying the raw streamflow forecasts against 

simulated flows, the MEFP-GEFS forecasts are substantially more skillful than the 

equivalent MEFP-GFS forecasts. For example, at CB-DOLC2, the MEFP-GEFS 

forecasts contribute five or more days of additional forecast lead time in the 

medium-range alone. These improvements are greatest during the snowmelt 

period and originate from the increased accuracy of the MEFP-GEFS temperature 

forecasts. Significant improvements are also seen in MARFC, where the MEFP-

GEFS streamflow forecasts contribute 2-4 days of additional forecast lead time. In 

general, however, these improvements are substantially lower when verifying the 

bias-corrected streamflow forecasts against observed flows (see below).  

 In AB-, CN- and MA-RFCs, the raw streamflow forecasts are conditionally biased 

with increasing rates of simulated flow. These biases originate from a similar 

conditional bias in the MEFP precipitation forecasts and increase as the forecast 

skill declines. For example, in ABRFC, the conditional bias increases rapidly during 

the first week, as the precipitation forecasts show little skill beyond one week. In 

CNRFC, the conditional biases increase throughout the medium-range, as the 

forecasts remain skillful during the middle portion of the forecast horizon. In 

CBRFC, the streamflow forecasts are conditionally unbiased for most streamflow 

rates. This stems from the importance of snowmelt in generating large streamflows 

in CBRFC. Specifically, there is a weaker dependence of high streamflows on 

heavy precipitation and the conditional biases therein. In some basins, notably AB-

BLKO2, the MEFP-GEFS forecasts partially compensate for the tendency to 

underestimate the highest flows with an increased spread and, thus, an increased 

chance of warning about the highest flows.  

 The overall skill of the post-processed streamflow forecasts, as well as the relative 

contributions from the MEFP and the EnsPost, vary with basin, season, and 

forecast lead time. They also vary with the source of forcing used in the MEFP. In 

general, the post-processed MEFP-GEFS forecasts are substantially more skillful 
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than the raw MEFP-CLIM forecasts. The overall skill is greatest in CBRFC and 

CNRFC, where the seasonal differences are also greatest. For example, during 

the wet season at CN-DOSC1 (Dos Rios, CA), the post-processed streamflow 

forecasts with MEFP-GEFS forcing are up to ~40% more skillful than the raw 

streamflow forecasts with MEFP-CLIM forcing. In the dry season, the overall skill 

increases to ~60% at the earliest forecast lead times. At low flows, a greater 

fraction of the total skill originates from streamflow post-processing, as the EnsPost 

benefits from hydrologic persistence. Also, in basins with a pronounced dry 

season, the meteorological forcing is more predictable during the summer months. 

For these reasons, the MEFP-GEFS streamflow forecasts do not substantially 

improve upon the MEFP-GFS forecasts at low flows.  

 At moderate and higher streamflow thresholds, a greater fraction of the total skill 

in the post-processed streamflow forecasts originates from the MEFP. Thus, at 

higher flows, the MEFP-GEFS forecasts generally improve upon the MEFP-GFS 

forecasts. During the wet season in CB- and CN-RFCs, and throughout the year in 

MA- and AB-RFCs, the MEFP-GEFS forecasts typically show similar skill to the 

MEFP-GFS forecasts for 1-2 days longer. For example, at CN-FTSC1, the MEFP-

GEFS forecasts detect streamflows above the 10% exceedence threshold with 

equivalent skill to the MEFP-GFS forecasts, but with an additional forecast lead 

time of ~2.5 days. However, when verifying the post-processed streamflow 

forecasts, the gains implied by the raw forecasts (against simulated flows) are not 

always realized by the EnsPost, particularly at high streamflow thresholds. Indeed, 

at early forecast lead times in AB- and MA-RFCs, and later forecast lead times in 

CB- and MA-RFCs, forecasts of moderate and high flows show a decline in CRPSS 

following streamflow post-processing. This may originate from a lack of stationarity 

in the hydrologic biases, among other things. For example, at CB-DOLC2, the 

hydrologic biases vary substantially between years, particularly during the 

snowmelt period. In practice, the hydrologic biases are often manifest as timing 

errors in the simulated flows, yet the EnsPost can only model these indirectly, as 

magnitude errors. In order to account for inter- and intra- annual variations in basin 

conditions, operational forecasters typically modify some combination of the 
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inputs, parameters, and states of the hydrologic models at runtime. However, 

adjusted simulations are not consistently archived by the RFCs. This may lead to 

inconsistencies in the calibration and operational use of the EnsPost. 

Recommendation 3: Data assimilation (DA) is the preferred approach to 

adjusting hydrologic model states. In principle, automated data assimilation 

would avoid inconsistencies between the calibration and operational use of the 

EnsPost caused by runtime modifications. Within an automated DA framework, 

adjustments to the hydrologic model states, and hence to the simulated flows, 

would be reproducible, both operationally and retrospectively. In addition, DA 

would increase the quality of the simulated flows, which are used by the EnsPost 

to quantify the hydrologic uncertainties and to eliminate any residual hydrologic 

biases. In this context, there is a need to better understand the limitations of the 

EnsPost, and of statistical post-processing more generally, for bias correcting 

forecasts of large and extreme events. In keeping with the meteorological 

forecasts, there is a risk of obfuscating a weak, but potentially valuable, signal in 

the raw streamflow reforecasts through statistical post-processing. Indeed, when 

the hydrologic uncertainties account for a large fraction of the total uncertainties 

in the streamflow forecasts, the benefits of improved meteorological forcing may 

be outweighed by residual hydrologic biases in the post-processed streamflow 

forecasts. 

 In order to evaluate the quality of the HEFS and to establish a baseline for future 

enhancements, more comprehensive hindcasting and verification is needed. This 

should be conducted by all RFCs, in collaboration with the Office of Hydrologic 

Development, for a range of forcing inputs, and for a broader range of river basins, 

including regulated rivers and outlets. Further work is needed to compare the 

streamflow forecasts from the HEFS against the RFC operational forecasts. In 

addition, there is a need to evaluate decision support systems and other 

applications that rely on the HEFS, such as water quality, river navigation, and 

water supply. Such applications are necessary to demonstrate the wider, societal 

and economic, benefits of the HEFS and of ensemble forecasting more generally. 

In this context, there is a need for interdisciplinary and interagency collaborations 

on uncertainty and risk, as hydrologic forecasts are only one input to environmental 

decision making, and not necessarily the most important one. 
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3. Introduction 

Uncertainties in the inputs to hydrologic models, combine with uncertainties in the 

model parameters, structures and initial conditions. These uncertainties propagate 

through the modeling system and lead to uncertainties about model predictions (Brown 

and Heuvelink, 2005; Schaake et al., 2006; Mattot et al., 2009; Cloke et al., 2013). 

Practical applications of hydrologic predictions frequently involve multiple variables, 

multiple space-time scales, and multiple interconnected systems, such as the 

atmosphere-surface, river-estuary, and surface-subsurface (Beven, 2008). They also 

involve interactions between physical, chemical, and biological processes, such as water 

quality and ecology. Thus, uncertainties from hydrologic modeling combine with other 

sources of uncertainty about environmental systems (Jakeman et al., 2006; Brown, 2010). 

As water resources generate social costs and benefits, uncertainties about hydrologic 

systems also involve risk. Indeed, hydrologic forecasts are frequently used in risk 

assessments, whether informally or as inputs to integrated decision support systems. 

Here, they combine with uncertainties about social and economic variables, decision 

frameworks and politics (Kahnemann et al., 1982; Hamlet et al., 2002; Filar and Haurie, 

2010; Ramos et al., 2012; Demeritt et al., 2013). Thus, hydrologic forecasts are only one 

input to environmental decision making, and not necessarily the most important one. On 

the one hand, it is important to assess and communicate the uncertainties in hydrologic 

forecasts, as deterministic forecasts can lead to inadequate decisions or to persistent 

conflict and indecision (Beven, 2000; Handmer et al., 2001). On the other hand, simplicity 

and parsimony are also desirable, as the estimates of uncertainty must be useful for 

environmental decision making. Ultimately, the aim is to achieve an appropriate balance 

of scope and detail in accounting for these uncertainties. As water resources are central 

to many social, economic, and environmental issues, this requires interdisciplinary and 

interagency collaborations on uncertainty and risk (Brown, 2010; Demeritt et al., 2013). 

Broadly, there are two approaches to quantifying the total uncertainty in hydrologic 

forecasts, namely disaggregated modeling of the individual sources of uncertainty 

(“bottom up”) and aggregated modeling of the total uncertainty (“top down”). In terms of 

the former, the different sources of uncertainty are quantified with probability distributions 
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and then propagated numerically, using ensemble techniques (Gneiting and Raftery, 

2005; Helton et al., 2006; Cloke et al., 2013). In terms of the latter, the total uncertainty is 

modeled empirically, by estimating the probability distribution of the observed variable 

conditionally upon a “raw”, single-valued, forecast (Glahn and Lowery, 1972). A hybrid of 

these approaches involves statistical post-processing of ensemble forecasts (Gneiting et 

al., 2007; Montanari and Grossi, 2008; van Andel et al., 2013). Whether using source-

based modeling, statistical modeling or some combination of the two, the quality of the 

meteorological forcing is important. However, top-down approaches, such as “model 

output statistics” (Regonda et al., 2013) use single-valued meteorological forecasts. In 

contrast, hydrologic Ensemble Prediction Systems (EPS) use forcing information from 

one or more meteorological EPS (Cloke et al., 2013).  

In recent years, improvements in computing power and ensemble techniques, as 

well the underlying atmospheric models and data assimilation schemes, have increased 

the applicability of meteorological EPS to regional, as well as global scales (Buizza et al., 

2005; Park and Xu, 2009; Warner, 2010; Hamill et al., 2013). This is an important 

motivation for developing hydrologic EPS. Indeed, the meteorological uncertainties may 

account for a large fraction of the total uncertainties in hydrologic forecasting. For short- 

to medium-range forecasting at a global scale, the development of meteorological EPS 

has been led by national and international forecasting agencies. Examples include the 

Global Atmospheric Model of the European Center for Medium Range Weather Forecasts 

(ECMWF; Hagedorn et al., 2012) and the Global Ensemble Forecast System (GEFS) of 

the National Centers for Environmental Prediction (NCEP; Hamill et al., 2013). At regional 

scales, universities and forecasting agencies have collaborated to develop limited area 

EPS, often using community tools, such as the Weather Research and Forecasting 

(WRF) model. Examples of limited area EPS include NCEP’s Short Range Ensemble 

Forecast System (SREF; Du et al., 2009; Brown et al., 2012), the University of 

Washington Mesoscale Ensemble (Grimit and Mass, 2002), and the Limited-area 

Ensemble Prediction System (LEPS) of the Consortium for Small-scale Modeling 

(COSMO; Marsigli et al., 2005). Elsewhere, limited area EPS have been nested into 

global EPS, in order to provide seamless forecasts across multiple spatial scales. 

Examples of nested models include the COSMO-LEPS, which uses selected members 
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of the ECMWF GAM (Marsigli et al., 2005), and the UK Meteorological Office Global and 

Regional Ensemble Prediction System (MOGREPS; Schellekens et al., 2011). Alongside 

spatial nesting, meteorological EPS increasingly use multi-model combinations or “super-

ensembles”. Combinations range from the unweighted assembly of individual EPS to 

weighted aggregations based on statistical post-processing. By leveraging the unique or 

orthogonal information across several EPS, multi-model forecasts generally improve on 

the best performing single-model forecasts (e.g. Marsigli et al., 2013), although weaker 

models can reduce the skill of unweighted combinations (e.g. Hagedorn et al., 2012). 

Examples of multi-model EPS include the THORPEX Interactive Grand Global Ensemble 

(TIGGE; Bougeault et al., 2010) and NCEP’s SREF (Du et al., 2009). In terms of the 

sources of uncertainty considered, multi-model forecasts may include multiple physics 

and multiple initial and boundary conditions, among others.  

Increasingly, hydrologic EPS use a combination of meteorological EPS to account 

for the forcing uncertainties and biases and statistical post-processing to model the 

hydrologic uncertainties and biases (Pappenberger et al., 2005; Seo et al., 2006; Wood 

and Schaake, 2008; Montanari and Grossi, 2008; van Andel et al., 2013; Brown and Seo, 

2013). However, there are important differences between hydrologic EPS (for a list of 

hydrologic EPS, see http://hepex.irstea.fr/operational-heps-systems-around-the-globe/, 

accessed 12/04/2013). Some hydrologic EPS use raw forcing from meteorological EPS 

without accounting for the hydrologic uncertainties and biases. This allows for the rapid 

integration of meteorological EPS into operational hydrologic forecasting. For example, 

the Meteorological Model-based Ensemble Forecast System (MMEFS) uses raw 

meteorological forecasts from the SREF, the GEFS and the North American Ensemble 

Forecast System (NAEFS). The MMEFS was developed by operational forecasters at the 

U.S. National Weather Service (NWS) to accelerate the implementation of meteorological 

EPS into hydrologic EPS (Philpott et al., 2012). While the meteorological forecasts are 

downscaled (interpolated) to basin-averaged quantities, the MMEFS does not correct for 

biases in the raw forcing or account for hydrologic uncertainties and biases. In practice, 

however, meteorological EPS generally contain biases that are important for hydrologic 

forecasting (Pappenberger and Buizza, 2009). Also, a significant fraction of the total 

uncertainty in streamflow forecasting may originate from the hydrologic uncertainties and 

http://hepex.irstea.fr/operational-heps-systems-around-the-globe/
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biases (Philpott et al., 2012). In other hydrologic EPS, the residual biases in the 

meteorological forecasts are lumped together with the hydrologic biases are removed 

through streamflow post-processing. This involves calibrating a statistical post-processor 

on hydrologic forecasts. For example, the European Floods Awareness System (EFAS) 

uses ensemble forecasts of temperature and precipitation from the ECMWF GAM. The 

meteorological forecasts are input to the LISFLOOD-FP hydrologic model from which 

ensemble forecasts of streamflow are output (Thielen et al., 2009). The raw streamflow 

forecasts are then bias-corrected with a vector autoregressive model whose predictors 

comprise transforms of the raw forecasts and observations in wavelet space (Bogner and 

Pappenberger, 2011).  

The Hydrologic Ensemble Forecast Service (HEFS) was developed by the Office 

of Hydrologic Development (OHD) of the NWS. The HEFS also uses a hybrid approach 

to quantifying and combining the meteorological and hydrologic uncertainties (Demargne 

et al., 2014). However, the meteorological uncertainties and biases are modeled 

separately from the hydrologic uncertainties and biases. In both cases, statistical post-

processing is used to correct for biases in the raw forecasts. The meteorological 

uncertainties and biases are quantified with the Meteorological Ensemble Forecast 

Processor (MEFP). The MEFP produces ensemble forecasts of precipitation and 

temperature conditionally upon a raw, single-valued, forecast (Wu et al., 2011). The 

space-time covariability of precipitation and temperature is modeled with the Schaake 

Shuffle (Clark et al., 2004). For short- to medium-range forecasting, the raw forecasts 

used by the MEFP include the operational, single-valued, temperature and precipitation 

forecasts from the NWS River Forecast Centers (RFCs) and the ensemble mean of 

NCEP’s GEFS. In removing the meteorological biases with the MEFP, the hydrologic 

uncertainties and biases can be modeled independently of the meteorological forcing 

(Seo et al., 2006; Demargne et al., 2014). For the same reason, they can be modeled 

independently of forecast lead time. The hydrologic uncertainties and biases are modeled 

in two stages. First, the meteorological forecasts from the MEFP are used to generate 

raw streamflow forecasts, which may contain hydrologic biases, but do not explicitly 

account for any hydrologic uncertainties. Secondly, the raw streamflow forecasts are 

post-processed with the Ensemble Postprocessor (EnsPost). The EnsPost models the 
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hydrologic uncertainties and biases from the residuals between the observed and 

simulated streamflows (Seo et al., 2006). In the EnsPost, the observed streamflows are 

propagated forwards in time using an autoregressive AR(1,1) model with the simulated 

flow as an exogeneous predictor (Seo et al., 2006).  

The HEFS is being implemented in several phases, with the initial version 

(HEFSv1) scheduled for operational use at all RFCs by the end of 2014. In order to 

establish a baseline for future enhancements, and to guide the operational use of the 

HEFSv1, several phases of hindcasting and verification are also underway. This involves 

retrospective forecasting of temperature, precipitation, and streamflow at selected RFCs 

and for selected sources of meteorological forcing. In an earlier phase of hindcasting, 

temperature, precipitation and streamflow forecasts were generated with the HEFSv1 

using forcing inputs from the “frozen” version of NCEP’s GFS (Brown, 2013). The frozen 

GFS employs a horizontal resolution of T62 or ~250km. In this report, the MEFP is 

calibrated with NCEP’s operational GEFS. The GEFS uses Version 9.0.1 of the GFS, 

which comprises a horizontal resolution of T254 (~55km) for 1-8 days and T190 (~70km) 

for 9-16 days, and a vertical resolution of L42 or 42 levels (Wei et al. 2008; Hamill et al. 

2011; Hamill et al. 2013). The hindcasts are produced for selected river basins in four 

NWS RFCs, namely the Arkansas-Red Basin RFC (ABRFC), the Colorado Basin RFC 

(CBRFC), the California-Nevada RFC (CNRFC) and the Middle Atlantic RFC (MARFC). 

The hindcasts are verified conditionally upon forecast lead time, season, and magnitude 

of the observed and forecast variables. Limited combinations of these attributes are also 

considered. In order to establish the benefits of the GEFS separately from any hydrologic 

biases, the raw streamflow forecasts are verified against simulated streamflows. In 

addition, the post-processed streamflow forecasts are verified against observed flows.  

The report is separated into three parts. It begins with the Material and Methods 

section, comprising an overview of the study basins and datasets, the HEFS 

methodology, and the verification strategy (Section 4). The results are then presented 

separately for the meteorological forecasts (Section 5.1), the raw streamflow forecasts 

(Section 5.2) and the bias-corrected streamflow forecasts (Section 5.3). Finally, the 

Discussion and Conclusions (Section 6) lead to guidance on the expected performance 
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and limitations of the HEFSv1 for medium-range forecasting with the GEFS, together with 

recommendations on future enhancements.  

4. Materials and methods 

4.1 Study area 

Four pairs of basins were used to evaluate the HEFSv1, each comprising one 

headwater and one immediately downstream basin. Figure 1 and Table 1 show the 

location of each basin, its average elevation, area, and the location of the nearest grid 

node in the GFS and the GEFS. Table 1 also shows the annual precipitation, the fraction 

of precipitation that generates runoff (the runoff coefficient), and the ratio of precipitation 

to potential evaporation (the climate index). The drainage areas range from 275 square 

kilometers (DRRC2) to 5457 square kilometers (FTSC1) and the runoff coefficients vary 

from 0.12 (CBNK1) to 0.58 (CNNN6). The basins were chosen for a combination of 

practical and hydrological reasons. First, they all originate from RFCs for which testing of 

the HEFSv1 is currently underway, namely AB-, CB-, CN-, and MA-RFCs. Indeed, the 

same basins were used to verify the precipitation, temperature and streamflow forecasts 

with forcing inputs from the frozen GFS (Brown, 2013). Second, as the uncertainties and 

biases propagate from upstream to downstream locations, it is important to understand 

the quality of the HEFSv1 in headwater basins. Third, headwater basins are important for 

operational forecasting of water quantity and quality, including flood warning and reservoir 

operations. Further downstream, the HEFS will be impacted by additional sources of bias 

and uncertainty, of which some are inherently difficult to quantify (e.g. the downstream 

effects of river regulations, simplified hydraulic routing and composite timing errors; see 

Raff et al., 2013). As part of the phased evaluation of the HEFS, more complex regimes, 

as well as additional sources of forcing, will be considered in future.  

Figure 2 shows the daily means of temperature and precipitation across each pair 

of basins, together with the daily mean runoff for the headwater and downstream basins 

separately. The averages are shown by calendar month and were derived from gauged 

temperature, precipitation, and streamflow over a 20 year period between 1979 and 1999 

(see Section 4.3). Nominally, two seasons are identified for each RFC, namely a “wet 
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season” and a “dry season.” These seasons are used in the calibration of the EnsPost 

(Appendix A) and in the verification of the forcing and streamflow forecasts (Section 5).  

As indicated in Figure 2, there are marked differences in the seasonality and 

covariability of precipitation and runoff among basins and among RFCs. The strongest 

seasonality occurs in CNRFC, where precipitation quickly translates into runoff. In 

CBRFC and, to a lesser extent, in MARFC, snow accumulates during the cool season 

and leads to runoff during the late spring and early summer. In ABRFC, the relationship 

between precipitation and runoff is modulated by the shallow terrain and the high 

vegetation cover in these basin, as well as increased evapotranspiration during the 

summer months.  

The basins in ABRFC comprise the Chikaskia River at Corbin, Kansas (CBNK1), 

and the Chikaskia River near Blackwell, Oklahoma (BLKO2). These basins experience a 

warm, and humid, summer climate. During the late spring and early summer, cool air from 

Canada and the Rocky Mountains combines with moist air from the Gulf of Mexico and 

hot air from the Sonoran Desert, leading to intense thunderstorms and tornados in Kansas 

and Oklahoma. 

The basins in CBRFC are located on the Dolores River in Colorado, with the 

headwater near Rico (DRRC2) and the downstream basin in Dolores (DOLC2). The 

Dolores River is a tributary of the Colorado River and occupies a narrow valley incised 

into the sandstone of the San Juan Mountains. Precipitation is reasonably constant 

throughout the year, but falls primarily as snow during the winter months and in the higher 

elevations of DRRC2. The snowpack melts in the late spring and early summer, which 

leads to a sharp increase in runoff between April and July (Figure 2). Of the pairs of basins 

considered, DRRC2 and DOLC2 show the greatest differences in streamflow climatology 

between the headwater and downstream basins. For the purposes of hydrologic 

modeling, DRRC2 is separated into two sub-basins, while DOLC2 is separated into three 

sub-basins, in order to accommodate the varied elevations there. The lower sub-basin of 

DRRC2 accounts for 77% of the total area of DRRC2 while, in DOLC2, the lower middle 

and upper sub-basins account for 17%, 61% and 22% of the total area, respectively.   
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The basins in CNRFC comprise the Middle Fork of the Eel River at Dos Rios 

(DOSC1) and the Eel River at Fort Seward (FTSC1). These basins are located on the 

windward slopes of the North Coast Ranges in northern California (Figure 1). During the 

late summer and early autumn, the upper reaches of the Eel River experience little or no 

precipitation and streamflow. Low flows are accentuated by diversions to the Russian 

River for use in the Potter Valley Hydro-Electric Project. In late autumn, cooler 

temperatures are accompanied by rapidly increasing precipitation, to which the 

streamflows respond through November and continue increasing until January (Figure 2). 

During the winter months, the predictability of heavy precipitation is increased by the 

onshore movement of weather fronts from the Pacific coast and their orographic lifting in 

the North Coast Ranges. The coastal mountains of northern California and the Pacific 

Northwest are also susceptible to “atmospheric rivers”, which carry moisture in narrow 

bands from the tropical oceans to the mid-latitudes. Atmospheric rivers can lead to 

persistent, heavy, precipitation and extreme flooding in the North Coast Ranges and 

further inland (Smith et al., 2010). For the purposes of hydrologic modeling, both DOSC1 

and FTSC1 are separated into two sub-basins, with the lower sub-basins accounting for, 

respectively, 77% and 97% of the total area of each basin.  

The basins in MARFC comprise the West Branch of the Delaware River at Walton 

in Pennsylvania (WALN6) and the inflow to Cannonsville Reservoir in New York State 

(CNNN6). The West Branch of the Delaware rises near Mount Jefferson in Schoharie 

County, NY, and flows through Delaware County until it reaches the Cannonsville 

Reservoir, approximately 15 miles downstream of Walton. In terms of daily precipitation 

amounts, the climatology is relatively constant throughout the year (Figure 2). However, 

during the winter months and in the higher elevations, the majority of precipitation falls as 

snow. With increasing rainfall and rising temperatures, the snowpack melts during the 

late spring, with streamflow peaking between March and April before declining rapidly in 

the summer months. Owing to the proximity of WALN6 and CNNN6, their runoff patterns 

are very similar throughout the year. The Cannonsville Reservoir is operated by the New 

York City Department of Environmental Protection (NYCDEP). It is one of three reservoirs 

in the Delaware River Basin and nineteen reservoirs overall that supply NYC with drinking 
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water. In order to improve the management of water supply from these reservoirs, the 

NYCDEP are currently evaluating streamflow forecasts from the HEFSv1.  

4.2 The Hydrologic Ensemble Forecast Service (HEFS) methodology 

Further details on the HEFS methodology can be found in Appendix A. The HEFS 

models the total uncertainty in streamflow at some future times, fq , conditionally upon 

the observed streamflow up to, and including, the current time, cq . The total predictive 

uncertainty is factored into two main sources of uncertainty, namely the “hydrologic 

uncertainties” and the “meteorological uncertainties”. The meteorological uncertainties 

are included in the raw streamflow forecast and the hydrologic uncertainties are modeled 

in an adjusted streamflow forecast. Omitting notation of the random variables for 

simplicity,   

1 2 3( | ) ( | , ) ( | ) , q q q q q q q qf c f c r r c rf f f d

RawTotal Adjusted

                                  (1) 

where qr  denotes the raw streamflow forecast. The raw streamflow forecast is estimated 

with the Hydrologic Ensemble Processor (HEP). The HEP integrates a finite number of 

“equally likely” forecasts of precipitation and temperature through the hydrologic models. 

These forecasts include the meteorological uncertainties, which are modeled explicitly 

3 4 5( | ) ( | , ) ( ) , q q q q m m mr c r c f f ff f f d

Raw Raw | Forcing Forcing

                                  (2) 

where fm  denotes the future forcing. The meteorological uncertainties are quantified with 

the Meteorological Ensemble Forecast Processor (MEFP). The MEFP models the future 

forcing conditionally upon a raw forecast, fr ; that is, by estimating the conditional 

distribution, 6( | )f ff m r  

5 6( ) ( | ).f f ff fm m r                                                   (3) 
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In this study, the raw forcing comprises the ensemble mean of NCEP’s GEFS and the 

ensemble mean of the frozen GFS. However, other sources of forcing are supported by 

the MEFP, including the RFC single-valued quantitative precipitation forecasts (Schaake 

et al., 2007; Wu et al., 2011). The HEFS does not currently isolate the contributions from 

other sources of uncertainty, such as the initial conditions or parameters of the hydrologic 

models (Appendix A). Rather, the overall effects of these hydrologic uncertainties are 

modeled in the adjusted streamflow forecast using the Ensemble Post-processor 

(EnsPost; Seo et al., 2006). In all cases, the parameters of future quantities are estimated 

from subsets of the historical data, for which a degree of stationarity is assumed.  

4.3 Datasets  

Hindcasts of mean areal temperature (MAT) and mean areal precipitation (MAP) 

were generated with the MEFP for a ~15 year period between 1985 and 1999. The 

hindcasts of MAP and MAT were produced at 12Z each day. Each forecast comprised 

~50 ensemble members, with lead times varying from 6 to 336 hours in six-hour 

increments. Inputs to the MEFP comprised raw precipitation and temperature forecasts 

from the latest version of NCEP’s operational GEFS (Hamill et al., 2013). In order to 

evaluate the skill of the MEFP-GEFS forecasts, forcing inputs were also generated with 

the frozen (circa 1997) version of NCEP’s GFS (Hamill et al., 2006) and with a conditional 

or “resampled” climatology. The latter involved resampling the historical observations of 

MAP and MAT in a moving window of, respectively, 61 days and 31 days around the 

forecast valid date. The MEFP hindcasts with forcing inputs from the GEFS, GFS and 

resampled climatology are denoted MEFP-GEFS, MEFP-GFS and MEFP-CLIM, 

respectively. In keeping with the recommended operational practice, the parameters of 

the MEFP were estimated from all available data (Table 2). The parameters of the 

bivariate relationship between the forecasts and observations are estimated from the 

historical pairs of forecasts and observations. The hindcasts from the operational GEFS 

comprise a ~25 year period from 1985-2010, while the hindcasts from the frozen GFS 

comprise a ~27 year period from 1979-2006 (Table 3). As indicated above, the MEFP 

also models the space-time covariability of precipitation and temperature. The Schaake 

Shuffle is trained with the historical observations of MAP and MAT alone. Alongside the 
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covariability of temperature and precipitation, the Schaake Shuffle determines the number 

of ensemble members in the MEFP forecasts (one per historical year).  

Raw streamflow hindcasts were generated with the Community Hydrologic 

Prediction System (CHPS) using the precipitation and temperature forecasts from the 

MEFP. The hindcasts were produced with the hydrologic models and parameter settings 

used operationally at each RFC. In AB-, CB- and CN-RFCs, the Snow Accumulation and 

Ablation Model (SNOW-17; Anderson, 1973) is used together with the Sacramento Soil 

Moisture Accounting Model (SAC-SMA; Burnash, 1995). In MARFC, the SAC-SMA is 

substituted with an empirical model, based on the Antecedent Precipitation Index (API), 

but adapted for continuous simulations (the so-called “Continuous API” model; Sittner et 

al., 1969). The models are integrated with a six-hourly timestep in AB- and MA-RFCs and 

an hourly timestep in CB- and CN-RFCs. Routing from the headwater to the downstream 

basin is conducted with Lag/K using constant or variable lag and attenuation (e.g. WALN6 

to CNNN6 uses a constant lag with no attenuation). In most RFCs, an ADJUST-Q 

operation is used to blend the recently observed streamflow into the operational forecast. 

However, ADJUST-Q was omitted from the streamflow hindcasting, as the EnsPost 

employs a weighted combination of the recently observed and forecast streamflows 

(Appendix A). In order to calibrate the EnsPost, and to establish the relative importance 

of the meteorological and hydrologic uncertainties, simulated streamflows were 

generated for each basin and used to verify the streamflow forecasts (see below). The 

parameters of the EnsPost were estimated from the historical pairs of observed and 

simulated streamflows in each basin (Table 2).   

Observations of precipitation and temperature were obtained from each RFC and 

comprised areal averages (MAP, MAT) of the gauged precipitation and temperature in 

each basin. The data comprise six-hourly observations at {0Z,6Z,12Z,18Z} between 

~1950-1999. Streamflow observations were obtained from the United States Geological 

Survey (USGS) and comprise daily mean streamflows at the outlet of each basin. The 

averages were determined from observations of river stage, beginning at midnight in local 

time, and converted to streamflow using a measured stage-discharge relation (Kennedy, 

1983). Subsequently, they were converted to runoff values (mm/day) for ease of 
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comparison between basins. While stage observations were available at the outflow of 

the Cannonsville Reservoir (CNNN6), the NYCDEP use inflow forecasts to manage the 

reservoir levels. Thus, the HEFS was calibrated and verified at the inflow to Cannonsville 

Reservoir. The inflows were estimated by NYCDEP using gauged reservoir levels and 

outflows. The outflows comprise all diversions, spills and releases, but evaporation is not 

considered. During the dry season, this can lead to approximation errors for low 

streamflows, which are assigned zero if the inflow estimates are negative. There are short 

periods of missing data in several RFCs. In particular, the streamflow observations are 

missing between 1st October 1996 and 1st October 1998 in DRRC2 and between 1st 

January 1999 and 31st December 1999 in CNNN6.   

As indicated above, the HEFS forecasts are issued at 12Z each day, while 

precipitation, temperature and streamflow are all observed in local time. In order to pair 

the meteorological observations and forecasts, the observed values were chosen from 

the nearest available time in {0Z, 6Z, 12Z, 18Z}. This introduced a timing error into the 

observations of +1 hours, 0 hours, -1 hours and -2 hours for MARFC, ABRFC, CBRFC 

and CNRFC, respectively. As the forecasts were verified at an aggregated support of one 

day or larger (see below), this timing error was deemed acceptable. However, pairing of 

the observed and forecast streamflows was complicated by the daily scale of the 

streamflow observations. Ultimately, any fractional downscaling of the observed 

streamflows to match the forecast day of 12Z-12Z would require a model of the temporal 

dependencies at the downscaled support. This could introduce significant biases, as the 

forecasts begin ~12 hours after the observations. Instead, the first ~12 hours of forecasts 

were ignored. This eliminated all timing errors associated with pairing in CBRFC and 

CNRFC, where the forecasts are issued hourly, and in ABRFC, where the six-hourly 

forecasts are offset from UTC by 6 hours. In MARFC, it introduced a one-hour timing 

error, as the observed day (5Z-5Z) is offset from the nearest available six-hourly forecast 

(6Z) by one hour. Pairing of the streamflow forecasts and simulations was straightforward, 

and daily averages were formed from 12Z to12Z each day. 
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4.4 Verification strategy  

Verification was conducted with the NWS Ensemble Verification System (EVS; 

Brown et al., 2010). The forecasts were verified conditionally upon season, forecast lead 

time, and magnitude of the observed and forecast variables. Limited combinations of 

these attributes were also considered, but were often constrained by the sampling 

uncertainties of the verification metrics. In evaluating the quality of the HEFS forecasts, 

unconditional bias and skill are important, as the HEFS is an operational forecasting 

system for which many applications, with varying sensitivities to streamflow amount, are 

anticipated. However, “average conditions”, particularly the ensemble mean, generally 

favor dryer weather and lower flows, as precipitation and streamflow are both skewed 

variables. Thus, conditional verification is also important. The MEFP forecasts were 

verified against observed temperature and precipitation. The streamflow forecasts were 

verified in two stages. First, in order to understand the benefits of the MEFP-GEFS forcing 

separately from any hydrologic biases, the raw streamflow forecasts were verified against 

simulated streamflows. Any differences between the hydrologic forecasts and simulations 

reflect the contribution of meteorological uncertainty to the streamflow forecasts, 

independently of any hydrologic uncertainties (but notwithstanding errors in the 

meteorological observations). Second, the post-processed streamflow forecasts were 

verified against observed streamflows. This allowed the benefits of the MEFP-GEFS 

forcing to be established in an operational context, where the EnsPost cannot be 

expected to remove all hydrologic biases.   

As indicated in Table 2, the periods used to calibrate and validate the HEFS are 

neither completely dependent nor independent. While statistical models generally 

perform better under dependent than independent validation, the HEFS was designed 

with a minimum number of parameters to estimate. Not surprisingly, therefore, 

experiments with the MEFP (e.g. Wu et al., 2011) and with the EnsPost (e.g. Seo et al., 

2006) have shown negligible differences between dependent and cross-validation when 

using a calibration period of 20+ years. In calibrating the HEFS, the recommended 

operational practice was followed; that is, to use all available data, subject to a 
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“reasonable” degree of stationarity in the forcing and streamflow observations (Seo et al., 

2006; Wu et al., 2011).   

When verifying forecasts of continuous random variables, such as precipitation 

and streamflow, verification is often performed both unconditionally and conditionally 

upon particular events (Wilks, 2006; Demargne et al., 2010; Jolliffe and Stephenson, 

2011). In order to compare the verification results between basins and seasons, for 

different forecast lead times and valid times, and for specific aggregation periods, 

common events were identified for each basin. Specifically, for each verifying dataset, v, 

aggregation period, a, and basin, b, a climatological distribution function, , , ,
ˆ ( )n v a bF x , was 

computed from the n values of the hydrometeorological variable, x, between 1985 and 

1999. Real-valued thresholds were then determined for 100k  climatological 

exceedence probabilities, pc , 
1

, , ,
ˆ ( )

n v a b pF c , where  0,1pc  and 1, , p k . Verification 

measures that depend continuously on threshold value, such as the mean error, were 

derived from the conditional sample in which the observed value exceeded the threshold. 

For consistency, exceedence thresholds are used throughout; for continuous measures, 

this implies greater emphasis on high streamflows. Measures defined for discrete events, 

such as the Brier Score, were computed from the observed and forecast probabilities of 

exceeding the threshold. When verifying the raw streamflow forecasts, , , ,
ˆ ( )n v a bF x  was 

derived separately for the streamflow observations and simulations. While the sampling 

uncertainties were not quantified here (see Brown and Seo, 2013 for an example), the 

verification results are only considered for sample sizes of 30 or more. For continuous 

measures, the sample size is determined by the number of verification pairs. For discrete 

measures, it comprises the smaller of the number of occurrences and non-occurrences.  

Key attributes of forecast quality are obtained by examining the joint probability 

distribution of the observed variable, Y, and the forecast variable, X, ( , )XYf x y . The joint 

distribution can be factored into 
|( , ) ( | ) ( )XY Y X Xf x y f y x f x , which is known as the 

“calibration-refinement” (CR) factorization and 
|( , ) ( | ) ( )XY X Y Yf x y f x y f y , which is known 

as the “likelihood-base rate” (LBR) factorization (Murphy and Winkler, 1987). The 
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conditional distribution, | ( | )Y Xf y x , reflects the Type-I conditional bias or reliability of the 

forecast probabilities when compared to ( )Xf x and resolution when only its sensitivity to 

X is considered. For a given level of reliability, sharp forecasts (i.e. forecasts with smaller 

spread or a greater deviation from climatology) are sometimes preferred over unsharp 

ones, as they contribute less uncertainty to decision making (Gneiting et al., 2007). Put 

differently, as the sharpness increases, other attributes of forecast quality must also 

increase to maintain a given level of forecast skill. The conditional distribution, 
| ( | )X Yf x y

, reflects the Type-II conditional bias of the forecasts when compared to ( )Yf y  and 

discrimination when only its sensitivity to Y is considered. If Y is assumed certain, i.e. 

the forecast probability distribution is given by the Dirac delta function, ( ) ( )Yf y y , the 

forecasts must be perfectly sharp (deterministic) and perfectly accurate to have no Type-

II conditional bias. In practice, no single metric provides a complete description of forecast 

quality (Hersbach, 2000; Bradley et al., 2004). Appendix B describes the metrics used in 

this paper. 

5. Results and analysis 

5.1 Quality of the precipitation and temperature forecasts 

The precipitation and temperature forecasts from the MEFP were verified against 

observed MAP and MAT, respectively. The results are presented by forecast lead time, 

season, and magnitude of the forcing variable.  

5.1.1 Forecast lead time 

Figure 3 shows the correlation between the ensemble mean forecast and observed 

precipitation for the upstream and downstream basin in each RFC. The results are shown 

for the raw GEFS forecasts and the MEFP outputs, which include MEFP-CLIM, MEFP-

GFS and MEFP-GEFS. In general, the highest correlations occur in MARFC and CNRFC, 

where the MEFP forecasts benefit from the regulating effects of the Atlantic Ocean and 

the Pacific Ocean, respectively. However, the forecast skill declines more rapidly in 

MARFC than CNRFC. For example, the MEFP-GEFS forecasts show correlations of ~0.8 
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in both CNRFC and MARFC at a forecast lead time of one day, and then decline to ~0.3 

in MARFC after six days, while remaining at ~0.6 in CNRFC. The forecasts in CBRFC 

show the lowest overall correlations and the largest differences between basins. This 

reflects the mountainous terrain surrounding the Dolores River, where the average 

elevation exceeds 2,500m in the headwater basin, CB-DRRC2.  

The MEFP aims to increase the skill of the raw forecasts by reducing bias, while 

preserving the information content in the raw forecasts; that is, by minimizing sampling 

uncertainty and other statistical artifacts. The MEFP employs a linear regression in normal 

space, with the observed variable as the predictand and the raw forecast as the predictor 

(Wu et al., 2011), for which the correlation coefficient is an important measure. As 

indicated in Figure 3, the MEFP preserves or increases the correlations between the 

ensemble mean of the raw GEFS forecasts and the observed variable. In preserving 

these correlations, the MEFP benefits from the improvements in the GEFS when 

compared to the GFS. Indeed, the MEFP-GEFS precipitation forecasts show higher 

correlations than the MEFP-GFS forecasts in all basins and at most forecast lead times, 

with increases in correlation of 0.1-0.2 during the short- to medium-range (Figure 3). In 

AB-, CB- and MA-RFCs, the MEFP-GEFS forecasts show higher correlations than the 

MEFP-GFS forecasts at all forecast lead times. In CNRFC, the improvements from the 

MEFP-GEFS are greatest after ~3 days, as the GEFS and GFS forecasts are both highly 

correlated with the observations at earlier forecast lead times (~0.8). When expressed as 

a gain in forecast lead time over the period of skillful forcing, the MEFP-GEFS forecasts 

typically add 1-2 days in forecast lead time to the MEFP-GFS forecasts (see Section 5.1.3 

also).  

Figure 4 shows the relative mean error (RME) of the MEFP-CLIM, MEFP-GFS and 

MEFP-GEFS precipitation forecasts. In general, the forecasts underestimate the 

observed precipitation amount by ~5-15%, with the smallest biases in CNRFC and the 

largest biases in CBRFC. However, these biases are small in absolute terms, amounting 

to less than 0.5mm/day of accumulation in CBRFC. Also, there is a slight 

underforecasting bias in the MEFP-CLIM forecasts in AB-, CB- and MA-RFCs. In 

principle, the MEFP-CLIM forecasts should be unconditionally unbiased, as they are 
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resampled from the same historical observations of MAP and MAT used to verify the 

MEFP forecasts. However, different periods of record were used to calibrate the MEFP 

and to conduct verification (Table 2). Thus, some of the differences between forcing 

sources, as well as the slight underforecasting bias in the MEFP-CLIM forecasts, may be 

related to climatological variability.     

Figures 5 shows the mean Continuous Ranked Probability Skill Score (CRPSS) of 

the MEFP-CLIM, MEFP-GFS and MEFP-GEFS precipitation forecasts against sample 

climatology. Sample climatology comprises the unconditional probability distribution of 

the observed MAP between 1985 and 1999. In keeping with the correlation results, the 

MEFP precipitation forecasts show the greatest skill in CNRFC, where the atmospheric 

predictability is greatest, followed by MARFC and ABRFC. In CBRFC, the precipitation 

forecasts show limited or negative skill and, while the MEFP-GEFS forecasts improve 

upon the MEFP-GFS forecasts, neither improve upon the MEFP-CLIM forecasts beyond 

~5 days. Moreover, the MEFP-CLIM forecasts are somewhat unskillful when compared 

to unconditional climatology. As indicated above, this may originate from differences in 

the climatology of the calibration and verification periods, with a longer period used to 

calibrate the MEFP-CLIM in CB-DRRC2 and CB-DOLC2 (1979-2005) than conduct 

verification (1985-1999). Notwithstanding the limited skill of the MEFP precipitation 

forecasts in CBRFC, the MEFP-GEFS forecasts are consistently more skillful than the 

MEFP-GFS forecasts. As with the correlation results, for a given amount of skill, the 

MEFP-GEFS forecasts typically add 1-2 days in forecast lead time to the MEFP-GFS 

forecasts (Figure 5).  

Figures 6 shows the mean CRPSS of the MEFP-CLIM, MEFP-GFS and MEFP-

GEFS temperature forecasts against sample climatology. Unlike the MEFP precipitation 

forecasts, the MEFP temperature forecasts consistently improve upon sample 

climatology. This reflects the strong seasonality in temperature when compared to 

precipitation (Figure 2) and the resulting advantage of a conditional (resampled) 

climatology over an unconditional one. For the same reason, the differences between the 

MEFP-CLIM, MEFP-GFS and MEFP-GEFS forecasts are more important than the 

absolute skill of the temperature forecasts. As indicated in Figure 6, the MEFP-GFS and 
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the MEFP-GEFS temperature forecasts both improve substantially upon resampled 

climatology and remain skillful for longer than the equivalent precipitation forecasts, owing 

to the relative predictability of temperature versus precipitation. However, in keeping with 

the precipitation forecasts, the benefits of the MEFP-GEFS are generally more 

pronounced after the first 1-2 days. In other words, as the errors begin to saturate in the 

MEFP-GFS forecasts, the MEFP-GEFS forecasts remain skillful for longer. Indeed, in the 

middle portion of the forecast horizon, the MEFP-GEFS adds 2-4 days of forecast lead 

time, for an equivalent CRPSS, when compared to the MEFP-GFS. While hydrologic 

models are generally more sensitive to precipitation forcing than temperature, accurate 

forecasts of surface temperature are important for predicting the timing of snowmelt in 

snow-dominated basins, such as CB-DOLC2 and CB-DRCC2.  

5.1.2 Magnitude of the forcing variable  

Figure 7 shows the correlation of the ensemble mean forecast and observed 

variable for increasing amounts of observed precipitation. The correlations are shown for 

the raw GEFS inputs, as well as the MEFP outputs. The results are plotted against 

climatological exceedence probability on a probit scale, but labeled with actual probability. 

For example, 0.01 represents a daily total precipitation amount that is exceeded, on 

average, only once in every 100 days (Table 1). As indicated in Section 4.4, verification 

scores that depend continuously on the data, such as the correlation coefficient and 

CRPSS, were derived from the subsample of verification pairs whose observed value 

exceeded the threshold. Thus, Figure 7 does not include zero precipitation amounts and 

the origin of each curve corresponds to the observed probability of precipitation (PoP). 

The results are shown for the upstream and downstream basins in each RFC and at 

selected forecast lead times. Figure 8 shows the CRPSS of the MEFP-GEFS and the 

MEFP-GFS forecasts for increasing amounts of observed precipitation, where skill is 

measured against sample climatology. The results are plotted for the downstream basin 

in each RFC and at selected forecast lead times. Alongside the mean CRPSS, the skill is 

decomposed into selected attributes of forecast quality, namely the relative reliability, 

CRPSSREL, the relative resolution, CRPSSRES, and the relative uncertainty CRPSSUNC. 
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As shown in Appendix B, smaller values of the CRPSSREL, and larger values of the 

CRPSSRES, both contribute to increased skill.   

As indicated in Figure 7, the correlations between the raw GEFS precipitation 

forecasts and observations are consistently preserved by the MEFP, with similar or higher 

correlations in the MEFP-GEFS forecasts at a range of precipitation thresholds and 

forecast lead times (notwithstanding some sampling noise). Furthermore, the MEFP-

GEFS forecasts consistently preserve or improve upon the correlations between the 

MEFP-GFS forecasts and observations. The greatest improvements occur in MARFC, 

where the MEFP-GEFS forecasts show substantially higher correlations at all 

precipitation thresholds and at all forecast lead times. In ABRFC, the correlations are 

improved at early forecast lead times, particularly for smaller precipitation thresholds. 

However, the benefits of the GEFS inputs decline with increasing forecast lead time and 

increasing precipitation amount. More generally, the effects of declining predictability and 

increasing sampling uncertainty (i.e. lower background correlations, higher precipitation 

thresholds) are to obscure any differences between the MEFP-GEFS and the MEFP-GFS 

forecasts until they become indistinguishable from climatology. In CBRFC, the raw GEFS 

forecasts show similar correlations to the MEFP-GFS forecasts, but the MEFP-GEFS 

forecasts apparently show higher correlations. In principle, the correlations may be 

improved by the MEFP, as the raw forecasts are translated into multiple predictors or 

“canonical events”, which aim to capture the skill in the raw forecasts at multiple temporal 

scales. However, some caution is necessary, as the raw GEFS forecasts exhibit only 

weak correlations and similar improvements are not seen in other RFCs. Unlike most 

basins, where the improvements from the MEFP-GEFS forecasts typically decline with 

increasing forecast lead time, the improvements in CNRFC are greatest during the middle 

portion of the forecast horizon. For example, at CN-FTSC1, the MEFP-GEFS and the 

MEFP-GFS forecasts show similar correlations at all precipitation thresholds after one 

day, but the MEFP-GEFS forecasts show higher correlations after seven days (Figure 7).  

During the first week, the MEFP-GEFS precipitation forecasts are consistently 

more skillful than the MEFP-GFS forecasts at AB-BLKO2, CB-DOLC2 and MA-CNNN6 

(Figure 8). However, during the second week, the MEFP-GEFS forecasts are no more 
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skillful than climatology and, in CB-DOLC2, the forecasts of light precipitation are 

somewhat less skillful than climatology. Overall, the greatest improvements from the 

GEFS occur in MA-CNNN6, where the MEFP-GEFS forecasts are 15-30% more skillful 

than climatology, while the MEFP-GFS forecasts are only 5-15% more skillful. At early 

forecast lead times, the MEFP-GEFS forecasts show similar skill to the MEFP-GFS 

forecasts in CN-FTSC1. However, they are substantially more skillful after seven days, 

particularly at higher precipitation thresholds. At lower precipitation thresholds, the 

residual skill of the MEFP-GEFS forecasts mainly originates from improved resolution. In 

contrast, at higher thresholds, it mainly originates from improved reliability. The reliability 

component of the mean Continuous Ranked Probability Score (CRPS) is closely related 

to the “flatness” of the verification rank histogram (Hersbach, 2000). In other words, small 

CRPSSREL implies that any two ranked ensemble members capture the observation with 

equal probability. The relative uncertainty is a property of the observed sample alone and 

subtracts from the overall skill (Appendix B). By definition, a climatological probability 

forecast is perfectly reliable (0.0) and has no resolution (0.0); thus, the CRPS of a 

climatological probability forecast is determined by the uncertainty component alone. In 

that case, the CRPSSUNC is greatest (1.0) when the conditional subsample of 

observations is equal to the full sample, i.e. to sample climatology. Since Figure 8 

originates at the PoP, the CRPSSUNC is always less than 1.0 and it declines with 

increasing precipitation amount.  

Figure 9 shows the reliability diagram for the MEFP-GEFS precipitation forecasts 

at the downstream basin in each RFC. The results are shown at a forecast lead time of 

1-2 days (24-48 hours) and for selected precipitation events, which are expressed as 

climatological exceedence probabilities. In addition to the 1-2 day PoP, Figure 9 shows 

the average reliability across the four, six-hourly sub-periods from which the 1-2 day 

accumulation was derived. In order to produce reliable forecasts at aggregated scales, a 

forecasting system must: 1) produce reliable forecast at disaggregated scales; and 2) 

adequately capture the statistical dependencies between the disaggregated scales. In the 

context of PoP, this implies adequate modeling of any statistical dependencies in 

precipitation intermittency at the six-hourly scale. As indicated in Appendix B, the 

reliability diagram compares the average observed and forecast probabilities across 
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several categories of forecast probability, together with the sample size or “sharpness” of 

the forecasts in each category. For a discrete event, such as flooding, an ensemble 

forecasting system is reliable if the event is observed with the same relative frequency as 

the forecast probability implies. Reliability is an important attribute of an operational 

forecasting system, as decisions are based on attributes of the forecasts, rather than the 

observed outcomes. Nevertheless, attributes of forecast quality that depend on observed 

outcomes (e.g. when flooding is observed to occur) are important for guiding model 

development and operational practice. Figure 10 shows the Relative Operating 

Characteristic (ROC) for both the MEFP-GEFS precipitation forecasts and the MEFP-

GFS forecasts at the downstream basin in each RFC. For a discrete event, such as 

flooding, an ensemble forecasting system is discriminatory if it correctly forecasts the 

event with a probability higher than chance (i.e. higher than the climatological probability) 

and correctly forecasts its non-occurrence with a probability lower than chance. The 

results are shown for a forecast lead time of 1-2 days and for increasing precipitation 

amounts. The ROC curves were fitted under an assumption of bivariate normality 

between the Probability of Detection (PoD) and the Probability of False Detection (PoFD) 

and are shown together with the empirical pairs of PoD and PoFD for each exceedence 

threshold (Appendix B). As the ROC is insensitive to reliability, it is often interpreted 

alongside the reliability diagram. 

As indicated in Figure 9, the MEFP-GEFS forecast are generally reliable for 

moderate and high precipitation amounts, particularly in AB-BLKO2, MA-CNNN6 and CN-

FTSC1. In DOLC2, the forecasts of moderate precipitation (Cp=0.1 or >6.5 mm/day) are 

somewhat over-confident at high forecast probabilities, but the sample sizes are also 

relatively small (~10-100 occurrences).  However, in CB-DOLC2, CN-FTSC1 and MA-

CNNN6, the forecasts of PoP are consistently too low. For example, in MA-CNNN6, when 

precipitation was forecast with an average probability of 0.4, it was observed with a 

probability of 0.6. In this context, PoP is defined as the probability of exceeding the 

smallest measurable precipitation amount. The latter was nominally defined as 0.25mm 

(for both the forecasts and observations). However, the results were found to be 

insensitive to the precise definition of PoP, and similar biases were observed for “light” 

precipitation amounts. Underestimation of PoP and light precipitation was also observed 
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for the MEFP-GFS forecasts (see Brown, 2013 also). Again, this suggests a problem in 

the modeling, estimation, or implementation of the MEFP for PoP and light precipitation, 

whether using the GEFS or the GFS. However, while the forecasts of PoP are generally 

unreliable at the daily scale, the corresponding six-hourly forecasts are reliable, on 

average. As indicated above, temporal aggregation relies on accurate modeling of the 

statistical dependencies between the disaggregated quantities. By implication, the lack of 

reliability in the accumulated PoP may originate from inadequate modeling of the temporal 

dependencies at the six-hourly scale; that is, from the handling of precipitation 

intermittency by the Schaake Shuffle.   

For moderate and high precipitation amounts, both the MEFP-GEFS forecasts and 

the MEFP-GFS forecasts are discriminatory, as well as reliable (Figure 10). An ensemble 

forecasting system is discriminatory if it correctly forecasts an event with a probability 

higher than chance and correctly forecasts its non-occurrence with a probability lower 

than chance. At a forecast lead time of 1-2 days, the MEFP-GEFS precipitation forecasts 

can discriminate between the exceedence and non-exceedence of selected precipitation 

thresholds in all basins (Figure 10). While the MEFP forecasts are more discriminatory 

than sample climatology at all precipitation thresholds, they are generally most 

discriminatory at moderate and high thresholds. The greatest discrimination occurs in CN-

FTSC1, where the atmospheric predictability is highest (e.g. Figure 3). The lowest 

discrimination occurs in CB-DOLC2, where the correlations and skill are also low. While 

the MEFP-GEFS forecasts are highly discriminatory in FTSC1, they are no more 

discriminatory than the MEFP-GFS forecasts. This reflects the small additional skill in the 

MEFP-GEFS forecasts during the first few days (e.g. Figure 8). In all other basins, the 

MEFP-GEFS forecasts are more discriminatory than the MEFP-GFS forecasts, at least 

for some precipitation thresholds. The greatest improvements occur in MA-CNNN6, 

where the discrimination is uniformly higher across all precipitation thresholds. By way of 

example, a decision maker may accept a PoFD of 5% in forecasting a one-day 

precipitation total greater than 14.75mm (Cp=0.05). In that case, the MEFP would forecast 

the event correctly on 55% of occasions when using the GFS and on 62% of occasions 

when using the GEFS. In AB-BLKO2, the additional discrimination is greatest at moderate 
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and high precipitation thresholds (Cp=0.1 and Cp=0.05), whereas in DOLC2, the GEFS 

adds more discrimination for PoP and light precipitation amounts (Cp=0.25).  

While the MEFP-GEFS precipitation forecasts are generally reliable or unbiased 

conditionally upon the forecast variable, they are not necessarily unbiased conditionally 

upon the observed variable. Indeed, in a separate study by Brown (2013), the MEFP-

GFS forecasts systematically underestimated the highest precipitation totals, particularly 

at longer forecast lead times, where the forecasts were no more skillful than climatology 

(climatology is, by definition, conditionally biased). This originated from the inability of the 

frozen GFS to accurately detect the largest precipitation amounts. Figure 11 shows box 

plots of errors in the MEFP-GFS and the MEFP-GEFS precipitation forecasts for the 

downstream basin in each RFC. Each box represents one ensemble forecast from the 

period 2-3 days (72-96 hours). Selected quantiles of the forecast error are plotted together 

with the median error and range (extreme residuals) as whiskers. The boxes are arranged 

by increasing amount of observed precipitation. At the highest precipitation amounts, the 

MEFP-GEFS forecasts show similar conditional biases to the MEFP-GFS forecasts 

(Figure 11), and the forecast median generally underestimates the observed precipitation 

by 50-100%. However, the MEFP-GEFS forecasts typically contain greater spread, both 

in terms of the interquartile range and the overall range. In other words, the MEFP-GEFS 

forecasts are more likely to predict the highest observed precipitation amounts (or 

similarly large amounts) with some, non-zero, probability of occurrence, even if their 

central tendency is to underestimate. Currently, the MEFP is calibrated with the ensemble 

mean of the raw forecasts (Appendix A). For the purposes of statistical post-processing, 

most of the information content in the frozen GFS is concentrated in the ensemble mean 

forecast (Wilks and Hamill, 2007; Wu et al., 2011). However, as atmospheric models and 

EPS become more skillful, statistical post-processors may benefit from using higher 

moments, interactions, or even the individual ensemble members, providing the sampling 

uncertainties are reasonably small. Future work should consider whether the raw GEFS 

forecasts contain valuable information beyond the ensemble mean and how best to 

leverage this information in the MEFP. 
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5.1.3 Season 

Seasonal verification was performed for the “wet” and “dry” seasons in each RFC. 

As indicated in Figure 2, the relationship between temperature, precipitation and 

streamflow varies between RFC. In MA- and CN-RFCs, the dry season coincides with the 

summer, whereas in AB- and CB-RFCs, it coincides with the winter. The forecasts were 

verified at increasingly high thresholds of the observed variable. These thresholds are 

expressed in terms of climatological exceedence probabilities. In order to compare the 

verification results between seasons, the thresholds were derived from the overall 

observed sample, ensuring fixed amounts of precipitation and temperature throughout 

the year. Figure 12 shows the CRPSS of the MEFP-GEFS precipitation forecasts, 

together with the MEFP-GFS forecasts, for increasing amounts of observed precipitation. 

Figure 13 shows the corresponding results for the MEFP temperature forecasts. The 

CRPSS is based on sample climatology, which comprises the climatology of observations 

in the paired sample, i.e. in the seasonal subsample. The results are plotted for the 

downstream basin in each RFC and for the wet and dry seasons, as well as the overall 

period. Three forecast lead times are considered, namely one, seven and 14 days.  

As indicated in Figure 12, the skill of the MEFP precipitation forecasts varies widely 

between the four basins considered, with the greatest CRPSS in CN-FTSC1, followed by 

MA-CNNN6, AB-BLKO2 and CB-DOLC2. In general, the MEFP forecasts are more skillful 

during the winter months. The winter occurs during the “wet” season in CN- and MA-RFCs 

and during the “dry” season in AB- and CB-RFCs. The seasonal differences in CRPSS 

typically amount to ~10-15% at early forecast lead times, with smaller differences as the 

overall skill declines. For example, in MA-CNNN6, the maximum CRPSS of the MEFP-

GEFS forecasts is ~60% during the wet season at a forecast lead time of one day and 

~46% during the dry season. At a forecast lead time of seven days, this declines to ~11% 

during the wet season and ~6% during the dry season. The MEFP precipitation forecasts 

are generally skillful in AB-BLKO2, CN-FTSC1 and MA-CNNN6 during both the wet and 

dry seasons. However, in CBRFC, the MEFP-GFS and the MEFP-GEFS forecasts are 

less skillful than climatology for some precipitation amounts and forecast lead times, but 

particularly during the wet season and at longer forecast lead times. As indicated in 
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Section 5.1.1, this may originate from differences in the climatology of the calibration and 

verification periods, as the latter comprises only a subset of years from the former. 

Despite the differences between basins, the MEFP-GEFS forecasts consistently improve 

upon the MEFP-GFS forecasts; that is, for all basins, in both seasons, and at most 

forecast lead times and precipitation amounts. In general, the greatest improvements 

occur in the earlier portion of the forecast horizon, but not always on the first day (Figure 

12). Indeed, in CN-FTSC1, the MEFP-GEFS precipitation forecasts are no more skillful 

than the MEFP-GFS forecasts during the first 1-2 days, but are substantially more skillful 

after seven days, particularly during the wet season and for high precipitation amounts 

(by ~10-15% at Cp≈0.01, relative to the climatological baseline). In MA-CNNN6, the 

greatest overall improvements occur during the summer months at a forecast lead time 

of ~four days. Here, the maximum CRPSS is achieved at moderately high precipitation 

amounts (Cp≈0.05), where the MEFP-GEFS forecasts are ~30% more skillful than 

climatology and the MEFP-GFS forecasts are only ~10% more skillful.  

For the temperature forecasts (Figure 13), the seasonal variations in CRPSS are 

controlled by three factors. First, the seasonality is reversed in AB- and CB-RFCs when 

compared to CN- and MA-RFCs. Thus, the two groups show similar patterns of skill in 

opposite seasons. Second, the CRPSS measures the relative quality of the forecasts. 

Under warm (summer) conditions, the MEFP forecasts are most skillful at the lowest and 

highest temperatures, where sample climatology is, by definition, conditionally biased. 

They are less skillful at moderate temperatures, where sample climatology performs 

reasonable well. Under cool (winter) conditions, the MEFP forecasts are more skillful at 

relatively warmer temperatures, again because sample climatology does not predict 

conditionally upon season (and warm temperatures are unusual in cool months). Third, 

the MEFP forecasts are conditionally biased at the coldest observed temperatures. As 

forecast skill partly depends on these conditional biases, the MEFP forecasts are less 

skillful during the cold season at the lowest observed temperatures. Nevertheless, the 

MEFP forecasts are considerably more skillful than sample climatology at all forecast lead 

times and for all observed temperatures. In keeping with the precipitation forecasts, the 

MEFP-GEFS temperature forecasts consistently improve upon the MEFP-GFS forecasts 

(Figure 13). The greatest improvements occur in CN-FTSC1 and MA-CNNN6 at a 
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forecast lead time of ~four days. Here, the CRPSS of the MEFP-GEFS forecasts is ~20% 

higher across all temperature thresholds. In general, the improvements are smaller in AB-

BLKO2 and CB-DOLC2. However, during the winter months (as well as the summer 

months in CB-DOLC2), the value added by the MEFP-GEFS increases when colder 

temperatures are included in the verification sample. For example, during the winter 

months in CB-DOLC2, the CRPSS is ~0.6 when using the MEFP-GEFS to forecast 

temperatures that are greater than -8 degrees C (Cp=0.9) and ~0.4 when using the MEFP-

GFS. In CBRFC, the additional skill in the MEFP-GEFS temperature forecasts may be 

important for hydrologic forecasting, as the timing and magnitude of the snowmelt are 

sensitively dependent on temperature during the snowmelt period (Figure 2). 

Figure 14 shows the net gain in forecast lead time associated with the MEFP-

GEFS precipitation forecasts when compared to the MEFP-GFS forecasts. As illustrated 

in Figure 15, the net gain in forecast lead time, t, comprises the difference in forecast 

lead time between the MEFP-GEFS forecasts and the MEFP-GFS forecasts when they 

achieve the same value of a verification score, m. Figure 14 shows the net gain in forecast 

lead time for three verification scores, namely the correlation coefficient, the mean 

Continuous Ranked Probability Skill Score (CRPSS) and the Brier Skill Score (BSS). The 

correlation coefficient and the CRPSS were determined from the unconditional sample of 

verification pairs. The BSS was determined for a daily precipitation total that is exceeded, 

on average, once every ten days (Cp=0.1). In computing the CRPSS and BSS, sample 

climatology was used as the reference forecast. In order to reduce the sampling 

uncertainty of t, the net gain was averaged over the first seven days of the forecast 

horizon, denoted t̅̅̅. The average comprised only finite values of t; that is, instances 

where both sources of forcing achieved the same values of m at some point during the 

14-day forecast horizon. The average net gain, t̅̅̅, is negative when the MEFP-GEFS 

forecasts achieve a lower score, on average, than the MEFP-GFS forecasts and positive 

when the MEFP-GEFS forecasts achieve a higher score, on average, than the MEFP-

GFS forecasts. The average net gain is zero when the forecasts have equivalent scores 

at all forecast lead times or the positive and negative values of t balance over the 

averaging period. Figure 16 shows the equivalent plot for the MEFP temperature 



42 of 139 
 

forecasts, where the BSS comprises a daily mean temperature that is exceeded with 90% 

probability (Cp=0.9) or, equivalently in terms of the BSS, a temperature that is not 

exceeded with 10% probability.   

As indicated in Figure 14, the MEFP-GEFS precipitation forecasts show a net gain 

in forecast lead time when compared to the MEFP-GFS forecasts. Put differently, the 

MEFP-GEFS forecasts show equivalent correlation, CRPSS and BSS at longer forecast 

lead times than the MEFP-GFS forecasts. When averaged over the first seven days, the 

MEFP-GEFS forecasts show equivalent correlation and skill for 1-2 days longer than the 

MEFP-GFS forecasts. For each RFC, these improvements are broadly consistent 

between seasons, metrics and basins (Figure 14). Between RFCs, the improvements are 

somewhat larger in CBRFC than other RFCs. However, in CBRFC, the apparent gains 

from the MEFP-GEFS should be treated with caution. For example, as shown in Figure 

8, the precipitation forecasts show little or no improvement on sample climatology (i.e. the 

curves are flat). In this context, the sampling uncertainties are larger and a gain in forecast 

lead time may not be physically meaningful. For temperature, the benefits of the MEFP-

GEFS forecasts are generally more pronounced (Figure 16). Here, the MEFP-GEFS 

forecasts show equivalent correlation and skill for 2-4 days longer than the MEFP-GFS 

forecasts. This is apparent across all RFCs, both seasons and for most verification 

scores. For example, in AB-BLKO2, the MEFP-GEFS produces temperature forecasts for 

the 10th percentile of the climatological distribution with equivalent BSS, but with 4.5 days 

of additional forecast lead time, to those produced by the MEFP-GFS. Elsewhere, in MA-

CNNN6, the MEFP-GEFS temperature forecasts show equivalent correlations ~four days 

later than the MEFP-GFS forecasts during the dry season and ~three days later during 

the wet season (Figure 16).  

5.2 Quality of the raw streamflow forecasts 

In order to understand the benefits of the MEFP-GEFS forcing separately from any 

hydrologic biases, the raw streamflow forecasts were verified against simulated 

streamflows. The verification results are presented by forecast lead time and season and 

amount of streamflow.   



43 of 139 
 

5.2.1 Forecast lead time and season 

Figure 17 shows the relative mean error (RME) of the streamflow forecasts with 

forcing inputs from the MEFP. The results are shown separately for the “wet” and “dry” 

seasons in each RFC, as well as the overall period (see Figure 2 also). The RME is plotted 

against forecast lead time for each basin and for each source of forcing used in the MEFP, 

namely MEFP-CLIM, MEFP-GFS and MEFP-GEFS. When verified against simulated 

flows, errors in the streamflow forecasts originate from errors in the MEFP forcing and in 

the observed forcing from which the simulations are produced (these are assumed to be 

negligible). Furthermore, when the forcing and streamflow climatologies are non-

stationary, discrepancies in the calibration and verification periods can also be important. 

In this study, the HEFS was applied to the operational hydrologic models, which are 

calibrated for different periods in each basin. In general, these periods are not aligned 

with the calibration of the MEFP or the EnsPost. They also differ from the verification 

period, i.e. 1985-1999. Thus, biases in the raw streamflow forecasts could originate from 

multiple sources, including biases in the MEFP forcing.  

As indicated in Figure 17, the ensemble mean forecast underestimates the 

simulated flows in AB- and CN-RFCs and overestimates the simulated flows in CBRFC. 

In MARFC, the ensemble mean is relatively unbiased during the wet season and for the 

overall period, but shows an underforecasting bias during the dry season, which 

increases with forecast lead time. In general, the RME of the overall period is dominated 

by the wet season, as the mean error is sensitive to high flows (in contrast to the mean 

relative error, for example). In ABRFC, the ensemble mean forecast underestimates the 

simulated streamflow by 5-10% (Figure 17). This is broadly consistent with the 

precipitation forecasts, which underestimate the observed precipitation by 5-10%, on 

average (Figure 4). However, in CBRFC, the simulated flows are overestimated by the 

ensemble mean forecast, while the precipitation forecasts underestimate the observed 

precipitation. This discrepancy is understandable because CB-DRRC2 and CB-DOLC2 

are snow-dominated basins. In these basins, errors in precipitation are not immediately 

reflected in streamflow and the quality of the streamflow forecasts also depends strongly 

on temperature during the snowmelt period. The greatest biases occur in CNRFC, where 
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the MEFP-GEFS streamflow forecasts underestimate the simulated streamflows by 5-

15%. Here, the MEFP-GFS and MEFP-GEFS precipitation forecasts over- and under-

estimate the observed precipitation, respectively, while the MEFP-CLIM forecasts are 

relatively unbiased (Figure 4). This ordering is broadly reflected in the raw streamflow 

forecasts, with smaller negative biases in the MEFP-GFS forecasts than the MEFP-GEFS 

forecasts. As indicated above, differences between the hydrologic forecasts and 

simulations may originate from several sources of error other than the MEFP forecasts.   

Figure 18 shows the correlation of the ensemble mean forecast and simulated 

streamflow by forecast lead time. The results are shown for the upstream and 

downstream basin in each RFC and for each source of forcing in the MEFP, namely 

resampled climatology, MEFP-GFS and MEFP-GEFS. Again, the results are shown 

separately for the wet and dry seasons, as well as the overall period. Figure 19 shows 

the CRPSS of the streamflow forecasts with forcing inputs from the MEFP-GFS and the 

MEFP-GEFS. Here, skill is measured against the streamflow forecasts with forcing inputs 

from resampled climatology, MEFP-CLIM.  

As indicated in Figure 18, the correlations are substantially higher for the MEFP-

GEFS streamflow forecasts than resampled climatology. The MEFP-GEFS streamflow 

forecasts are also substantially more skillful than the MEFP-CLIM forecasts (Figure 19). 

Similarly, when compared to the MEFP-GFS streamflow forecasts, the MEFP-GEFS 

forecasts are consistently more correlated with the simulated streamflows and show 

higher CRPSS. At early forecast lead times, the correlations are similar for all sources of 

forcing (Figure 18) and the CRPSS is lower (Figure 19). This is understandable because 

the initial conditions are common to all streamflow forecasts. Also, the hydrologic models 

respond unevenly to meteorological forcing, depending on basin characteristics and 

antecedent conditions. For example, in AB-CBNK1 and AB-BLKO2, the streamflow 

forecasts show limited skill (Figure 19) and a rapid decline in correlations with increasing 

forecast lead time (Figure 18). This originates from the lack of hydrologic persistence in 

these basins and the difficulty in forecasting precipitation beyond the short range. Indeed, 

while the MEFP-GEFS precipitation forecasts improve substantially upon the MEFP-GFS 

forecasts, they are no more skillful than the MEFP-CLIM forecasts after ~one week 
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(Figure 8). In contrast, CB-DRRC2 and CB-DOLC2 are snow-dominated basins, where 

forecast skill is driven by the hydrologic uncertainties and the streamflow correlations 

decline only gradually over time (Figure 18). The MEFP-GEFS streamflow forecasts are 

substantially more skillful than the MEFP-GFS forecasts in these basins (Figure 19), 

contributing five or more days of additional forecast lead time in the medium-range alone. 

However, when verified against observed streamflows, this additional skill is not fully 

translated into the post-processed streamflow forecasts (see Section 5.3.1).   

 In keeping with the quality of meteorological forecasts in MA- and CN-RFCs (e.g. 

Figure 7 and Figure 8), and the relative importance of the meteorological uncertainties in 

these basins (Section 5.3), the streamflow forecasts show high correlations and good skill 

in MA- and CN-RFCs. Here, the benefits of the MEFP-GEFS forecasts are greatest during 

the wet season, particularly in MA-WALN6 and MA-CNNN6, where the MEFP-GEFS 

streamflow forecasts show equivalent CRPSS ~2 days ahead of the MEFP-GFS 

forecasts (Figure 19). In these basins, the MEFP-GFS streamflow forecasts are 

indistinguishable from climatology after ~ten days, while the MEFP-GEFS forecasts 

remain skillful throughout the medium-range. During the summer months, the streamflows 

in CNRFC are dominated by hydrologic persistence, with little flow in the upper reaches 

of the Eel River (Figure 2). Under these conditions, the MEFP-GEFS forecasts do not 

significantly improve on the MEFP-GFS forecasts (Figure 19).  

5.2.2 Magnitude of streamflow 

The raw streamflow forecasts were verified conditionally upon the amount of 

streamflow at each forecast lead time. Figure 20 shows the RME of the ensemble mean 

forecast at selected forecast lead times, while Figure 21 shows the correlation of the 

ensemble mean forecast and simulated streamflow. The results are shown for each 

source of forcing in the MEFP, namely resampled climatology, MEFP-GFS and MEFP-

GEFS. The scores are plotted against climatological exceedence probability on a probit 

scale, but are labeled with actual probability. As indicated in Section 4.4, continuous 

measures, such as the RME, were derived from the subset of verification pairs whose 

simulated value exceeded the threshold. Thus, flows denoted by a climatological 
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probability of Cp=0.1 comprise the 10% of flows that exceed this threshold and not the 

90% of flows that fall below it. Figure 22 shows the BSS of the MEFP-GEFS and MEFP-

GFS streamflow forecasts, where the baseline comprises the streamflow forecasts with 

climatological forcing. For discrete measures, such as the Brier Score, the forecast event 

and its complement have the same error in absolute terms. Thus, the BSS is equivalent 

for a streamflow rate that exceeds a threshold of Cp=0.1 or does not exceed this threshold. 

The hydrologic initial conditions do not contribute to the BSS, as the MEFP-CLIM 

forecasts were initialized from the same (warm) states as the MEFP-GFS and MEFP-

GEFS forecasts. This is important because the initial conditions contribute a significant 

fraction of the total skill in some basins, notably in CB-DRRC2 and CB-DOLC2. 

In AB-, CN- and MA-RFCs, the raw streamflow forecasts are conditionally biased 

in the ensemble mean with increasing streamflow amount (Figure 20) and they are 

increasingly biased at longer forecast lead times. Indeed, the conditional biases increase 

in proportion to the decline of forecast skill over time, as climatology is, by definition, 

conditionally biased. For example, in ABRFC, the conditional biases increase rapidly over 

the first week, as the forecasts show little skill beyond one week. In CNRFC, the 

conditional biases are much smaller at ~seven days than ~14 days, as the forecasts 

remain skillful during the middle portion of the forecast horizon. These conditional biases 

originate from the precipitation forecasts rather than the hydrologic modeling (Figure 11). 

Consequently, they are sensitive to the degree of conditional bias in the precipitation 

forecasts, as well as the sensitivity of the streamflow forecasts to the meteorological 

forcing. For the same reason, the streamflow forecasts are conditionally unbiased for 

most streamflow rates in CB-DRRC2 and CB-DOLC2, despite the large conditional biases 

in the precipitation forecasts (Figure 11). This stems from the importance of snowmelt in 

generating large streamflows in these basins (Figure 2). As snow accumulation involves 

a time integral over the accumulation period, there is a weaker dependence of high 

streamflows on heavy precipitation. In general, the raw streamflow forecasts show similar 

conditional biases for the MEFP-GFS and MEFP-GEFS forcing, with the latter 

contributing slightly higher (negative) biases in CNRFC, particularly under dry conditions, 

and slightly lower (negative) biases in ABRFC.  
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In order to illustrate the practical impacts of these conditional biases on forecasting 

error and the capacity to warn about unusually high streamflows, box plots were 

computed from the raw streamflow forecasts. The results are shown in Figure 23 for the 

downstream basin in each RFC and at a forecast lead time of five days (recalling that the 

conditional biases increase over time). The box plots are organized by increasing amount 

of simulated streamflow. Each box represents one ensemble forecast from the period 4-

5 days. Selected quantiles of the forecasting errors are plotted together with the median 

error and range (extreme residuals) as whiskers. In keeping with the precipitation 

forecasts (Figure 11), the streamflow forecasts with MEFP-GEFS forcing show similar 

conditional biases to those with MEFP-GFS forcing, but increased spread in some basins. 

In CB-DOLC2, CN-FTSC1 and MA-CNNN6, both the MEFP-GFS and the MEFP-GEFS 

forecasts show sufficiently large spread, and sufficiently low biases, to provide some 

warning of the highest simulated flows (Figure 23). In AB-BLKO2, the MEFP-GEFS 

forecasts partially compensate for a large conditional bias with increased spread. Here, 

the MEFP-GEFS forecasts consistently warn of the highest simulated flows (Figure 23), 

whereas the MEFP-GFS forecast are unable to provide a warning in most cases.  

While the streamflow forecasts with MEFP-GEFS forcing show similar conditional 

biases to the MEFP-GFS forecasts, the MEFP-GEFS forecasts show higher correlations 

and improved skill in most basins, at most streamflow rates, and for most forecast lead 

times (Figure 21 and Figure 22). These improvements are sometimes more pronounced 

during the middle portion of the forecast horizon than earlier forecast lead times. For 

example, in CNRFC, the MEFP-GEFS forecasts show similar correlations to the MEFP-

GFS forecasts after two days, but higher correlations after seven days (Figure 21). This 

partly reflects the lagged response of the hydrologic models to forcing. It also reflects the 

characteristics of the MEFP-GEFS forcing (e.g. Figure 7 and Figure 8), where the 

marginal improvements over the MEFP-GFS were greater during the middle portion of 

the forecast horizon (e.g. in CN-FTSC1). As with the unconditional CRPSS (Figure 19), 

the greatest improvements in BSS occur in CB-DRRC2 and CB-DOLC2 (Figure 22). For 

example, the MEFP-GFS forecasts are 10% more skillful than the MEFP-CLIM forecasts 

at predicting streamflow rates that are above (or below) the median streamflow, while the 

MEFP-GEFS forecasts are 50% more skillful at predicting these rates (Figure 22).  
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5.3 Quality of the bias-corrected streamflow forecasts 

In order to establish the benefits of the MEFP-GEFS forcing in an operational 

context, the post-processed streamflow forecasts were verified against observed flows. 

The results are presented by forecast lead time and season, and amount of streamflow. 

The overall skill is determined relative to the raw streamflow forecasts with climatological 

forcing, and the contributions from the MEFP and the EnsPost are factored out. Alongside 

the verification results, a selection of the paired forecasts and observations is provided in 

Appendix C. By plotting the ensemble mean and range against the observed streamflow 

amounts, the strengths and weaknesses of the HEFS forecasts can be evaluated (albeit 

subjectively) for specific hydrologic events, providing some insight into timing and 

amplitude errors before and after streamflow post-processing, both for the MEFP-GFS 

and MEFP-GEFS forcing. 

5.3.1 Forecast lead time and season 

Figure 24 shows the RME of the bias-corrected streamflow forecasts with forcing 

inputs from the MEFP-GEFS and the MEFP-GFS. The RME of the raw streamflow 

forecasts is also shown for the MEFP-GEFS forcing. The ability of the EnsPost to produce 

reliable and skillful hydrologic forecasts will depend on several factors, including any 

residual biases in the MEFP forcing, the length and quality of the calibration data, whether 

the assumptions of the EnsPost are met, and the skill of the predictors. The hydrologic 

uncertainties and biases are estimated from the residuals between the observed and 

simulated streamflows (Appendix A). These residuals include errors in the observed 

forcing, from which the simulated flows are produced, and in the observed streamflows 

(both of which are assumed to be reasonably unbiased). They do not include errors in the 

meteorological forecasts, which are modeled by the MEFP. Thus, any residual biases 

from the MEFP will propagate into the streamflow forecasts. Alongside the various 

sources of bias in the streamflow forecasts, there are various measures of unconditional 

and conditional bias. These measures have different sensitivities and practical 

implications. For example, the ensemble mean, as well as the mean error, are sensitive 

to outliers, particularly for skewed variables, such as precipitation and streamflow. 
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Nevertheless, the mean error of the ensemble mean forecast is an important measure of 

unconditional unbiasedness, and unconditional unbiasedness is an important attribute of 

an operational forecasting system. When estimating the parameters of the EnsPost, the 

estimates are not guaranteed to produce forecasts that are unconditionally unbiased (Seo 

et al., 2006). Rather, the predictions aim to minimize the mean CRPS of the post-

processed streamflow forecasts. The unconditional bias is only one component of the 

CRPS, specifically a contribution to the reliability term (Hersbach, 2000). 

Following streamflow post-processing, the MEFP-GEFS streamflow forecasts 

show similar unconditional biases to the MEFP-GFS forecasts (Figure 24). In general, the 

EnsPost reduces the RME of the ensemble mean forecast. However, these 

improvements are not uniform. For example, in AB-BLKO2 and AB-CBNK1, the 

unconditional biases are increased during the dry season while, in MA-CNNN6, they are 

increased during the wet season. Elsewhere, in CN-DOSC1 and CN-FTSC1, there is an 

underforecasting bias, particularly during the wet season. This is not improved by the 

EnsPost and is greater for the MEFP-GEFS forecasts than the equivalent MEFP-GFS 

forecasts. In practice, the meteorological uncertainties and biases interact with the 

hydrologic uncertainties and biases and lead to complex behaviors. Depending on the 

relative magnitude and direction of these biases, and the sensitivities of the hydrologic 

models, the meteorological biases may be exaggerated or modulated by streamflow post-

processing. For example, in CNRFC, the meteorological uncertainties account for a 

significant fraction of the total uncertainties (see below). In these basins, the raw MEFP-

GEFS streamflow forecasts show similar RME to the bias-corrected forecasts (Figure 24). 

Both underestimate the observed streamflow, when compared to the MEFP-GFS 

forecasts, because the MEFP-GEFS precipitation forecasts are drier, on average, than 

the MEFP-GFS precipitation forecasts (Figure 4). In contrast, during the wet season 

(which dominates the overall period), the post-processed streamflow forecasts are 

relatively unbiased in CBRFC. Superficially, this appears to be inconsistent with the 

underforecasting bias in the MEFP-GEFS precipitation forecasts (Figure 4) and the over-

forecasting bias in the raw streamflow forecasts (Figure 24). However, this reflects the 

greater importance of the hydrologic uncertainties in CBRFC (see below), as well as the 

complex relationship between the meteorological and hydrologic uncertainties in these 
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two basins. Here, the RME (among other unconditional statistics) is particularly sensitive 

to the high streamflows that occur during the snowmelt period. Snowmelt is sensitively 

dependent upon temperature, but relatively insensitive to biases in precipitation. 

Consequently, the underforecasting biases in the MEFP-GEFS precipitation forecasts 

(Figure 4) are not reflected in the MEFP-GEFS streamflow forecasts (Figure 24).  

Figure 25a and Figure 25b show the overall CRPSS of the post-processed 

streamflow forecasts for the upstream and downstream basins in each RFC, respectively. 

The results are shown for the streamflow forecasts with forcing inputs from the MEFP-

GEFS, as well as the MEFP-GFS. The baseline in the CRPSS comprises the raw 

streamflow forecasts with forcing inputs from MEFP-CLIM. In addition to the overall skill, 

the CRPSS is factored into contributions from the MEFP and the EnsPost 

 ,
  

 CLIM GEFSPOST CLIM GEFS GEFS GEFSPOST

CLIM CLIM CLIM

CRPS CRPS CRPS CRPS CRPS CRPS

CRPS CRPS CRPS

Total skill MEFP - GEFS skill EnsPost skill

       (4) 

where the subscripts denote the source of forcing used in the MEFP. As indicated above, 

the streamflow forecasts were all initialized from the same (warm) states. Thus, the skill 

from the initial conditions is factored out of the CRPSS.  

The overall skill of the post-processed streamflow forecasts, as well as the relative 

contributions from the MEFP and the EnsPost, vary with basin, season, and forecast lead 

time. They also vary with the source of forcing used in the MEFP. In general, the bias-

corrected MEFP-GEFS forecasts are substantially more skillful than the raw MEFP-CLIM 

forecasts. The overall skill is greatest in CBRFC and CNRFC, where the seasonal 

differences are also greatest. For example, during the wet season in CN-DOSC1, the 

post-processed MEFP-GEFS forecasts are up to ~40% more skillful than the raw MEFP-

CLIM forecasts (Figure 25a). In the dry season, the overall skill increases to ~60% at the 

earliest forecast lead times (Figure 25a). However, the origins of this skill are quite 

different, depending on the season considered. In both RFCs, the dry season is 

dominated by low flows and hydrologic persistence. During prolonged dry periods, the 

meteorological forecasts are relatively unimportant (indeed, the MEFP contributes 
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negatively in CBRFC), while the EnsPost benefits from hydrologic persistence. In 

contrast, during the wet season, the overall skill is driven by the meteorological forcing in 

CNRFC, while the hydrologic uncertainties remain important in CBRFC. This is 

understandable, because CB-DRRC2 and CB-DOLC2 are snow-dominated basins, 

where the EnsPost also benefits from hydrologic persistence under snowmelt conditions. 

The hydrologic uncertainties are less important in CN-DOSC1 and CN-FTSC1, including 

at high flows. Here, predictability is greatly enhanced during the winter months by the 

onshore movement of weather fronts from the Pacific coast and their orographic lifting in 

the North Coast Ranges. In AB-CBNK1 and AB-BLKO2, the overall CRPSS is lower, as 

the meteorological forecasts are less skillful (e.g. Figure 5), and the hydrologic 

persistence is also lower. In both AB- and MA-RFCs, the relative contributions from the 

MEFP and the EnsPost vary with forecast lead time (Figure 25a and Figure 25b). At the 

earliest forecast lead times (~1-2 days), much of the skill originates from the EnsPost. 

After ~two days, the MEFP contributes a significant fraction of the total CRPSS.  

As indicated in Figure 25a and Figure 25b, the MEFP-GEFS streamflow forecasts 

are consistently more skillful than the MEFP-GFS forecasts. The fraction of skill 

contributed by the MEFP also increases when using the MEFP-GEFS forcing, particularly 

during the wet season in CB-DRRC2, CB-DOLC2, MA-WALN6 and MA-CNNN6. During 

the middle portion of the forecast horizon, the MEFP-GFS forcing contributes little or no 

skill in these basins (even negative skill in CB-DRRC2 and CB-DOLC2). In contrast, the 

MEFP-GEFS forcing accounts for most or all of the skill in the MEFP-GEFS streamflow 

forecasts at corresponding forecast lead times (not including any background skill from 

the hydrologic initial conditions). However, neither the MEFP-GEFS forcing nor the 

MEFP-GFS forcing contribute valuable skill during the dry season in CBRFC (Figure 25a 

and Figure 25b). Rather, in CB-DOLC2, both the MEFP-GEFS precipitation forecasts and 

the MEFP-GFS forecasts are somewhat less skillful than the MEFP-CLIM forecasts 

(Figures 25b; Figure 4). In practice, however, the MEFP forcing does not translate into 

streamflow during the winter months, as most of the precipitation in CB-DRRC2 and CB-

DOLC2 falls as snow.  
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Figure 26 shows the net gain in forecast lead time associated with the MEFP-

GEFS streamflow forecasts when compared to the MEFP-GFS forecasts. As illustrated 

in Figure 15, the net gain in forecast lead time, t, comprises the difference in forecast 

lead time between the MEFP-GEFS forecasts and the MEFP-GFS forecasts achieving 

the same value of a verification score, m. Figure 26 shows the net gain in forecast lead 

time for three verification scores, namely the correlation coefficient, the CRPSS and the 

BSS. The correlation coefficient and the CRPSS were determined from the unconditional 

sample of verification pairs. The BSS was determined for a daily streamflow rate that is 

exceeded, on average, once every ten days (Cp=0.1). In order to reduce the sampling 

uncertainty of t, an average was computed over the first seven days of the forecast 

horizon, denoted t̅̅̅. The average comprised only finite values of t; that is, instances 

where both forecasts achieved the same values of m at some point during the 14-day 

forecast horizon. As indicated in Figure 26, the MEFP-GEFS forecasts generally show 

equivalent correlation, CRPSS and BSS at longer forecast lead times than the MEFP-

GFS forecasts. Indeed, during the wet season in CB- and CN-RFCs, and throughout the 

year in MA- and AB-RFCs, the MEFP-GEFS typically adds 1-2 days in forecast lead time 

for all verification measures. For example, in CN-FTSC1, the MEFP-GEFS forecasts 

show equivalent skill to the MEFP-GFS forecasts in predicting streamflow rates above 

Cp=0.1, but with an additional forecast lead time of ~2.5 days (Figure 26). In CB- and CN-

RFCs, the dry season is characterized by persistent low flows (Figure 2). Here, the 

benefits of the MEFP-GEFS forcing are, understandably, smaller, as the meteorological 

and hydrologic uncertainties are low. 

5.3.2 Magnitude of streamflow 

The post-processed streamflow forecasts were verified for increasing amounts of 

observed streamflow. Figure 27 shows the Brier Skill Score (BSS) at a forecast lead time 

of ~five days (~90-114 hours: see Section 4.3) for the upstream and downstream basins 

in each RFC. As indicated above, the benefits of the MEFP-GEFS forecasts are typically 

greatest during the middle portion of the forecast horizon. The BSS is plotted against 

climatological exceedence probability, Cp. For example, Cp=0.1 denotes the daily mean 

streamflow that is exceeded, on average, once every ten days. The BSS measures the 
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gain in skill (or reduction in BS) of the post-processed streamflow forecasts with MEFP-

GEFS forcing, and with MEFP-GFS forcing, relative to those with climatological forcing. 

In addition, the BSS is shown for the raw streamflow forecasts with MEFP-GEFS forcing.  

By conditioning on the observed and forecast variables, the BSS can be factored into 

more detailed attributes of forecast quality (Appendix B). When conditioning on the 

forecast variable, these comprise the “relative reliability” and “relative resolution”, which 

are also shown in Figure 27. For each forecast probability issued, the reliability 

component of the BS measures the extent to which the average forecast probability differs 

from the average observed probability (Appendix B). As statistical post-processing 

focuses on the same conditional biases, much of the skill contributed by the EnsPost may 

originate from improvements in reliability (Seo et al., 2006; Brown and Seo, 2013). The 

resolution measures the sensitivity of the observed outcomes when grouping by forecast 

probability; that is, whether the forecast probability is closely related to an event occurring 

or not occurring, after factoring out any conditional bias (Appendix B). As indicated above, 

all components of the BSS are relative to the streamflow forecasts with MEFP-CLIM 

forcing, which removes any contribution from the hydrologic initial conditions. 

At low streamflow thresholds, the post-processed MEFP-GEFS forecasts show 

similar skill to the post-processed MEFP-GFS forecasts (Figure 26). Here, the majority of 

skill originates from the EnsPost, rather than the MEFP. Under low flow conditions, the 

streamflow forecasts benefits from hydrologic persistence; that is, from the prior observed 

streamflow, which is used as an auxiliary predictor in the EnsPost (Appendix A). At these 

thresholds, the bias-corrected streamflow forecasts are substantially more reliable, and 

somewhat more resolved, than the raw forecasts (Figure 26). In AB-, CB- and CN-RFCs, 

the upstream and downstream basins show similar patterns of skill, with similar (non-

equal) contributions from reliability and resolution. However, in MARFC, the forecast 

probabilities of exceeding low flows are substantially less skillful at Cannonsville (MA-

CNNN6) than Walton (WALN6). This reflects a combination of lower resolution and higher 

conditional bias at CNNN6 (Figure 26), which may originate from the truncation of 

estimated inflows to the Cannonsville Reservoir under dry conditions.  
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Figure 28 shows the reliability diagrams for the bias-corrected streamflow forecasts 

with MEFP-GEFS forcing at a forecast lead time of ~2 days (~18-42 hours). The results 

are shown for the downstream basin in each RFC and for selected streamflow thresholds. 

By comparing the average observed and forecast probabilities for each group (bin) of 

forecast probabilities, the reliability of the forecasts can be established in terms of 

absolute probabilistic error. As indicated in Figure 28, the bias-corrected MEFP-GEFS 

forecasts are both reasonably sharp (confident) and reliable (not over-confident) at low 

and moderate streamflow thresholds. In MA-CNNN6, the forecasts of low flows (Cp=0.9) 

are truncated at low probability thresholds. Figure 29 shows the Relative Operating 

Characteristic (ROC) for the bias-corrected streamflow forecasts with MEFP-GEFS 

forcing. The results are shown for the downstream basin in each RFC, for selected 

thresholds, and at a forecast lead time of ~2 days (~18-42 hours). The ROC curves were 

fitted under an assumption of bivariate normality between the Probability of Detection 

(PoD) and the Probability of False Detection (PoFD) and are shown together with the 

empirical pairs of PoD and PoFD for each threshold (Appendix B). The streamflow 

forecasts are most discriminatory in CB-DOLC2 and CN-FTSC1. In BLKO2, the forecasts 

are less discriminatory at moderate streamflow thresholds and, in CNNN6, they are less 

discriminatory at all streamflow thresholds, but particularly at low flows (Cp=0.9). 

However, the bias-corrected forecasts are substantially more discriminatory than sample 

climatology in all basins and at all streamflow thresholds (the diagonal line in Figure 29). 

At moderate and higher streamflow thresholds, a greater fraction of the total skill 

in the streamflow forecasts originates from the MEFP than the EnsPost. Following 

streamflow post-processing, the MEFP-GEFS forecasts generally improve upon the 

MEFP-GFS forecasts, particularly in CBRFC (Figure 26). However, these improvements 

are modest and are subject to sampling uncertainties. Also, at high streamflow thresholds, 

the benefits of the EnsPost are less clear. Indeed, while the MEFP-GEFS forecasts are 

no less skillful than the MEFP-GFS forecasts, they are not improved by hydrologic post-

processing. Figure 30 shows the CRPSS of the MEFP-GEFS forecasts before and after 

streamflow post-processing, together with the post-processed MEFP-GFS forecasts. 

Again, following streamflow post-processing, the MEFP-GEFS forecasts are generally 

more skillful than the MEFP-GFS forecasts. However, except in CNRFC where the 
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EnsPost contributes little to the overall skill under wet conditions (e.g. see Figure 25a and 

Figure 25b for the wet season), the MEFP-GEFS forecasts show some loss of skill from 

streamflow post-processing. This also occurs for the MEFP-GFS forecasts (results not 

shown). Indeed, at early forecast lead times in AB- and MA-RFCs, and later forecast lead 

times in CB- and MA-RFCs, the post-processed MEFP-GEFS forecasts are less skillful 

than the raw MEFP-GEFS forecasts at moderate and higher flows (Cp<0.1) (Figure 30). 

Nevertheless, at early forecast lead times, the post-processed MEFP-GEFS forecasts are 

substantially more skillful than the MEFP-CLIM forecasts, both at high and low flows 

(Figure 30). They are also more discriminatory than a climatological probability forecast 

(Figure 29). 

6. Discussion and conclusions 

Retrospective forecasts of temperature, precipitation and streamflow were 

generated with the Hydrologic Ensemble Forecasts Service (HEFS) for selected river 

basins in four NWS River Forecast Centers (RFCs), namely the Arkansas-Red Basin RFC 

(ABRFC), the Colorado Basin RFC (CBRFC), the California-Nevada RFC (CNRFC) and 

the Middle Atlantic RFC (MARFC). The precipitation and temperature forecasts were 

generated with the HEFS Meteorological Ensemble Forecast Processor (MEFP). The 

MEFP produces ensemble forecasts of Mean Areal Temperature (MAT) and Mean Areal 

Precipitation (MAP), conditionally upon a raw, single-valued, forecast. Here, the single-

valued forecast comprised the ensemble mean from NCEP’s Global Ensemble Forecast 

System (GEFS). Until recently, the MEFP used the frozen (circa 1997) version of NCEP’s 

Global Forecast System (GFS; see Brown 2013). The frozen GFS employs a horizontal 

resolution of T62 or ~250km. The operational GEFS uses Version 9.0.1 of the GFS, which 

comprises a horizontal resolution of T254 (~55km) for 1-8 days and T190 (~70km) for 9-

16 days, and a vertical resolution of L42 or 42 levels (Wei et al. 2008; Hamill et al. 2011). 

A new reforecast dataset was recently completed by NCEP (Hamill et al. 2013) and was 

used to calibrate the MEFP. The hindcasts of temperature, precipitation and streamflow 

were generated for a 15 year period between 1985 and 1999. While the GEFS reforecasts 

were available until 2010, the observations of MAT, MAP and streamflow were not 

consistently available in all basins after 1999. In CB- and CN-RFCs, the upstream and 
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downstream basins were separated into multiple sub-basins, in order to accommodate 

the varied elevations there. The forecast time horizon was 1-14 days and the timestep of 

the hydrologic models was six-hourly in MA- and AB-RFCs and hourly in CB- and CN-

RFCs. Streamflow forecasts were produced with the Community Hydrologic Prediction 

System (CHPS). In AB-, CB- and CN-RFCs, the hydrologic models included the 

Sacramento Soil Moisture Accounting model (SAC-SMA) and the Snow Accumulation 

and Ablation Model (SNOW-17). In MARFC, the SAC-SMA was substituted with an 

empirical model, based on the Antecedent Precipitation Index (API). The raw streamflow 

forecasts were post-processed with the Ensemble Postprocessor (EnsPost). The 

EnsPost accounts for the hydrologic uncertainties and reduces any hydrologic biases 

(Seo et al., 2006).  

The precipitation, temperature and streamflow forecasts were verified with the 

Ensemble Verification System (Brown et al., 2010). The results are presented by forecast 

lead time, season, and magnitude of the observed and forecast variables. In order to 

establish the benefits of the MEFP-GEFS for operational hydrologic forecasting, 

hindcasts of temperature, precipitation and streamflow were also generated with the 

frozen version of NCEP’s GFS (MEFP-GFS). Both the MEFP-GEFS forecasts and the 

MEFP-GFS forecasts were compared to a “resampled” or conditional climatology (MEFP-

CLIM). This involved resampling the historical observations of MAP and MAT in a moving 

window of, respectively, 61 days and 31 days around the forecast valid date. By 

conditioning separately on the observed and forecast variables, the forecast errors were 

factored into several attributes of forecast quality, including independent measures, such 

as reliability and discrimination. The precipitation and temperature forecasts were verified 

against observed MAP and MAT, respectively. In order to establish the benefits of the 

MEFP-GEFS forecasts separately from any hydrologic biases, the raw streamflow 

forecasts were verified against simulated flows. In addition, the bias-corrected streamflow 

forecasts were verified against observed flows. This allowed the benefits of the MEFP-

GEFS forcing to be established in an operational context, where the hydrologic 

uncertainties may outweigh the meteorological uncertainties, and the EnsPost cannot be 

expected to remove all of the hydrologic biases.  
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A detailed comparison between the raw GEFS reforecasts and the MEFP-GEFS 

forecasts was hampered by the different spatial scales of inputs and outputs (i.e. a single 

grid node versus a basin average). Nevertheless, the correlations between the raw 

forecasts and observations are preserved or improved by the MEFP at all forecast lead 

times, in both seasons, and at all magnitudes of the observed variable. Also, the MEFP-

GEFS forecasts consistently improve upon the MEFP-CLIM forecasts. Both are important 

attributes of reliable and skillful meteorological forecasts. Indeed, the MEFP aims to 

preserve the correlations in the raw, single-valued, forecasts and to produce ensemble 

forecasts that are reliable and no less skillful than resampled climatology. 

In general, the patterns of skill and bias in the MEFP-GFS forecasts (Brown, 2013) 

are mirrored by the MEFP-GEFS forecasts. For example, the MEFP-GEFS forecasts 

show much higher correlations and greater skill in CNRFC than in AB- or CB-RFCs. This 

is associated with the greater predictability of large storms in the North Coast Ranges 

during the winter months. However, when compared to the MEFP-GFS forecasts, the 

seasonal variations in forecast skill are less pronounced in the MEFP-GEFS forecasts. 

For example, in CN- and MA-RFCs, the MEFP-GEFS precipitation forecasts show similar 

overall skill in the wet and dry seasons, while the MEFP-GFS forecasts are much more 

skillful during the wet season. In MARFC, the MEFP-GEFS precipitation forecasts are 

highly skillful at early forecast lead times, particularly at moderate precipitation amounts, 

but the forecast skill declines more rapidly when compared to CNRFC. In keeping with 

the MEFP-GFS precipitation forecasts, the MEFP-GEFS forecasts are consistently less 

skillful in AB- and CB-RFCs than MA- and CN-RFCs (at least during the first few days). 

This originates from a combination of reduced predictability in the southern plains and in 

the intermountain region of the western U.S., together with residual biases that were not 

removed by the MEFP. In general, both the MEFP-GEFS precipitation forecasts and the 

MEFP-GFS forecasts are unbiased and skillful during the first week, but show much lower 

skill and higher conditional biases during the second week.  

Despite the broad similarities between the MEFP-GEFS forecasts and the MEFP-

GFS forecasts, the MEFP-GEFS forecasts show higher correlations and greater skill than 

the MEFP-GFS forecasts. In AB-, CB- and MA-RFCs, the MEFP-GEFS precipitation 
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forecasts show higher correlations than the MEFP-GFS forecasts at all forecast lead 

times. In CNRFC, the improvements from the MEFP-GEFS are greatest after ~three days, 

as the raw GFS forecasts show similar correlations during the first 1-2 days (~0.8). In 

keeping with the correlation results, the MEFP-GEFS precipitation forecasts are 

consistently more skillful than the MEFP-GFS forecasts in AB-, CB- and MA-RFCs. 

However, after seven days, the MEFP-GEFS forecasts are no more skillful than 

climatology and, in CB-DOLC2, the forecasts of light precipitation are somewhat less 

skillful than climatology. In principle, the MEFP-CLIM forecasts should not be less skillful 

than sample climatology. However, this may originate from differences in the climatology 

of the calibration and verification periods, as the latter comprises only a subset of years 

from the former. Overall, the MEFP-GEFS precipitation forecasts show the greatest 

benefits in MA-CNNN6, where they are 15-30% more skillful than climatology, while the 

MEFP-GFS forecasts are only 5-15% more skillful. As indicated above, at early forecast 

lead times, the MEFP-GEFS forecasts show similar skill to the MEFP-GFS forecasts in 

CNRFC. However, after seven days, the MEFP-GEFS forecasts are substantially more 

skillful than the MEFP-GFS forecasts, particularly at higher precipitation thresholds. At 

lower precipitation thresholds, the residual skill of the MEFP-GEFS forecasts mainly 

originates from improved resolution whereas, at higher thresholds, it mainly originates 

from improved reliability. However, reliable forecasts may be conditionally biased given 

the observed variable. Indeed, the MEFP-GEFS forecasts systematically underestimate 

the highest observed precipitation amounts (see below). While the MEFP-GEFS forecasts 

are more discriminatory than the sample climatology at all precipitation thresholds, they 

are generally most discriminatory at moderate and high thresholds. The greatest 

discrimination occurs in CN-FTSC1, where the atmospheric predictability is highest. The 

lowest discrimination occurs in CB-DOLC2, where the correlations and skill are also low. 

When expressed as a net gain in forecast lead time over the period of skillful forcing, the 

MEFP-GEFS precipitation forecasts typically add 1-2 days in forecast lead time when 

compared to the MEFP-GFS forecasts.  

Both the MEFP-GEFS temperature forecasts and the MEFP-GFS forecasts 

improve substantially upon resampled climatology. They also remain skillful for longer 

than the precipitation forecasts. Indeed, the MEFP-GEFS temperature forecasts remain 
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skillful throughout the second week. However, in keeping with the precipitation forecasts, 

the benefits of the MEFP-GEFS are generally more pronounced after the first 1-2 days. 

Thus, the errors saturate more quickly in the MEFP-GFS temperature forecasts than the 

MEFP-GEFS forecasts. For example, in the middle portion of the forecast horizon, the 

MEFP-GEFS forecasts show equivalent CRPSS to the MEFP-GFS forecasts, but with 2-

4 days of additional forecast lead time. The greatest improvements occur in CN-FTSC1 

and MA-CNNN6. In these basins, when measured against sample climatology, the 

MEFP-GEFS forecasts are ~20% more skillful than the MEFP-GFS forecasts across all 

temperature thresholds. In general, the improvements are smaller in AB-BLKO2 and CB-

DOLC2. However, during the winter months (as well as the summer months in CB-

DOLC2), the value added by the MEFP-GEFS increases when colder temperatures are 

included in the verification data. For example, during the winter months in CB-DOLC2, 

the CRPSS is ~0.6 when using the MEFP-GEFS to forecast temperatures above -8 C 

(Cp=0.9) and ~0.4 when using the MEFP-GFS. While accurate forecasts of MAT are 

generally less important for hydrologic modeling than accurate forecasts of MAP, surface 

temperatures are important in determining the accumulation and melting of snow. Thus, 

in snow-dominated basins, such as CB-DRRC2 and CB-DOLC2, the additional skill of the 

MEFP-GEFS temperature forecasts may be important for hydrologic modeling.  

As described by Hamill et al. (2013), there is a software bug in Version 9.0.1 of the 

GFS, whereby incorrect look-up tables are used in the land surface parameterization. 

This is known to introduce biases into the raw forecasts of near-surface temperatures. 

These biases were not apparent in the MEFP temperature forecasts. However, they pose 

a challenge for continuity of service with the HEFS, as the MEFP relies on operational 

forecasts whose statistical properties are reasonably stable and consistent with those of 

the hindcasts. 

Both the MEFP-GEFS forecast and the MEFP-GFS forecasts comprise a range of 

conditional biases. In particular, there is a tendency for the precipitation forecasts to 

underestimate the Probability of Precipitation (PoP). This lack of reliability also effects the 

MEFP-CLIM forecast. Indeed, the MEFP forecasts of PoP are substantially worse than 

unconditional climatology in some basins. In order to produce reliable forecasts of PoP at 
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a daily accumulation, the forecasts must be reliable at a six-hourly accumulation. 

Furthermore, they must adequately capture the statistical dependencies between the six-

hourly accumulations. In practice, the forecasts of PoP are unreliable at a daily 

accumulation, while the corresponding six-hourly forecasts are reliable, on average. This 

alludes to a problem with the modeling of precipitation intermittency at a six-hourly 

accumulation. More specifically, is alludes to a problem with the temporal variability of 

precipitation intermittency in the MEFP forecasts. The space-time covariability of 

precipitation and temperature is modeled with the Schaake Shuffle (Clark et al., 2004). 

The Schaake Shuffle reproduces the historical space-time covariability of the observed 

MAT and MAP conditionally upon forecast valid date. It does not model these patterns 

conditionally upon the state of the atmosphere. Thus, it cannot account for any differences 

in covariability under dry versus wet conditions (beyond the unconditional probability of 

matching those conditions). Further investigation is warranted into the limitations of the 

Schaake Shuffle, particularly for extreme events, and whether other empirical structures, 

such as high-resolution forecasts or conditional climatologies, can better reproduce the 

space-time covariability of precipitation and temperature (e.g. Shefzik et al., 2013). 

Alongside the underestimation of PoP, the precipitation forecasts are conditionally 

biased with increasing amounts of observed precipitation. This originates from a Type-II 

conditional bias in the MEFP precipitation forecasts. Again, it is apparent in the MEFP-

GEFS precipitation forecasts, as well as the MEFP-GFS forecasts, and resampled 

climatology. While climatology is, by definition, perfectly reliable, it is conditionally biased 

given the observed variable. For this reason, the Type-II conditional bias increases as the 

forecast skill declines; hence, it varies with location, season and forecast lead time, 

among other factors. At early forecast lead times in CNRFC, the biases are sufficiently 

small, and the spread is sufficiently large, that the highest precipitation totals are generally 

forecast with some, non-zero, probability of occurrence. However, in other basins, and at 

longer forecast lead times, the largest precipitation totals are routinely underestimated by 

as much as the observed precipitation amount. While the MEFP-GEFS forecasts show 

similar conditional biases to the MEFP-GFS forecasts, they also comprise more spread 

in some cases. For example, in AB-BLKO2, the MEFP-GEFS forecasts are more likely to 
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warn of the highest observed precipitation amounts, even if their central tendency is to 

underestimate.  

Currently, the MEFP is calibrated with the ensemble mean of the raw GEFS 

forecasts (Appendix A). Most of the skill in the frozen GFS is concentrated in the 

ensemble mean forecast (Wilks and Hamill, 2007; Wu et al., 2011). However, as 

atmospheric models and EPS become more skillful, post-processors may benefit from 

using higher moments, interactions, or even the individual ensemble members. Thus, 

future work should consider, first, whether the GEFS contains useful information beyond 

the ensemble mean and, second, how best to leverage this information, while maintaining 

a parsimonious description of the forecast errors. More generally, further work is needed 

on the limitations of statistical post-processing for large and extreme events. Here, the 

desire for unbiasedness must be weighed against the risk of obfuscating a weak, but 

potentially valuable, signal in the raw forecasts. The ability to calibrate the MEFP with 

reasonably small sampling uncertainty is important in this context. Thus, future work 

should leverage all of the available GEFS reforecasts and corresponding operational 

forecasts. 

In order to understand the benefits of the MEFP-GEFS forcing independently of 

any hydrologic biases, the raw streamflow forecasts were verified against simulated flows. 

In general, both the MEFP-GEFS streamflow forecasts and the MEFP-GFS forecasts are 

substantially more skillful than those with climatological forcing. Similarly, when compared 

to the MEFP-GFS streamflow forecasts, the MEFP-GEFS forecasts are consistently more 

correlated with the simulated streamflows and show higher CRPSS. At a forecast lead 

time of one day, the correlations are similar for all sources of forcing and the CRPSS is 

lower. This is understandable, because the streamflow forecasts with MEFP-CLIM forcing 

comprise the same initial conditions as those with MEFP-GEFS and MEFP-GFS forcing. 

As the hydrologic models respond unevenly to meteorological forcing, depending on 

basin characteristics and antecedent conditions, the period over which the MEFP-GEFS 

forecasts improve upon the MEFP-GFS forecasts varies between basins. For example, 

in AB-CBNK1 and AB-BLKO2, the streamflow forecasts show a rapid decline in 

correlation with increasing forecast lead time. This originates from a lack of hydrologic 
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persistence in ABRFC and the difficulty in forecasting precipitation beyond the short-

range, but particularly heavy precipitation. Indeed, while the MEFP-GEFS precipitation 

forecasts are more skillful than the equivalent MEFP-GFS forecasts, they are no more 

skillful than the MEFP-CLIM forecasts after ~one week. In contrast, the basins in CBRFC 

are dominated by snow accumulation and melting. Here, much of the skill in the 

streamflow forecasts depends on the hydrologic uncertainties, specifically on the initial 

conditions in the hydrologic models. However, the timing and rate of snowmelt also 

depends on the accuracy of the temperature forecasts during the snowmelt period. In CB-

DRRC2 and CB-DOLC2, the highest streamflows occur during the snowmelt period, and 

integral measures of error and skill, such as the CRPSS, are sensitive to these flows. 

When verifying the raw streamflow forecasts against simulated flows, the MEFP-GEFS 

forecasts are substantially more skillful than the equivalent MEFP-GFS forecasts. For 

example, in CB-DOLC2, the MEFP-GEFS forecasts contribute five or more days of 

additional forecast lead time in the medium-range alone. These improvements are 

greatest during the snowmelt period and originate from the increased accuracy of the 

MEFP-GEFS temperature forecasts, as the MEFP-GEFS precipitation forecasts are 

unskillful beyond ~3-6 days. Substantial improvements are also seen in MA-WALN6 and 

MA-CNNN6, where the MEFP-GEFS streamflow forecasts contribute 2-4 days of 

additional forecast lead time. In general, however, the benefits of the MEFP-GEFS are 

less pronounced when verifying the bias-corrected streamflow forecasts against 

observed flows (see below).  

In AB-, CN- and MA-RFCs, the raw streamflow forecasts are conditionally biased 

with increasing rates of simulated flow. These biases originate from a similar conditional 

bias in the MEFP precipitation forecasts (to which the hydrologic models are more 

sensitive in AB-, CN- and MA-RFCs). By definition, climatology is conditionally biased for 

large values of the observed (and simulated) variable. Thus, the degree of conditional 

bias increases as the forecast skill declines. For example, in ABRFC, the conditional bias 

increases rapidly over the first week, as the forecasts show little skill beyond one week. 

In CNRFC, the conditional biases increase throughout the medium-range, as the 

forecasts remain skillful during the middle portion of the forecast horizon. In CBRFC, the 

streamflow forecasts are conditionally unbiased for most streamflow rates. This stems 
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from the importance of snowmelt in generating large streamflows in these basins. Indeed, 

while the precipitation forecasts show large conditional biases in CB-DRRC2 and CB-

DOLC2, snow accumulation is a time integral over the accumulation period. This implies 

a weaker dependence of high streamflows on heavy precipitation and the conditional 

biases therein. In practice, while the MEFP-GEFS streamflow forecasts are consistently 

more skillful than the MEFP-GFS forecasts in all basins, both the MEFP-GEFS forecasts 

and the MEFP-GFS forecasts show large Type-II conditional biases. Nevertheless, in 

some basins (notably AB-BLKO2), the MEFP-GEFS forecasts partially compensate for 

the tendency to underestimate the highest flows with an increased spread and, thus, an 

increased chance of warning about the highest flows.  

The overall skill of the post-processed streamflow forecasts, as well as the relative 

contributions from the MEFP and the EnsPost, vary with basin, season, and forecast lead 

time. They also vary with the source of forcing used in the MEFP. In general, the post-

processed MEFP-GEFS forecasts are substantially more skillful than the raw MEFP-CLIM 

forecasts. The overall skill is greatest in CBRFC and CNRFC, where the seasonal 

differences are also greatest. For example, during the wet season in CN-DOSC1, the 

post-processed MEFP-GEFS forecasts are up to ~40% more skillful than the raw MEFP-

CLIM forecasts. In the dry season, the overall skill increases to ~60% at the earliest 

forecast lead times. At low flows, a greater fraction of the total skill originates from 

streamflow post-processing, as the EnsPost benefits from hydrologic persistence. Also, 

in basins with a pronounced dry season, the meteorological forcing is more predictable 

during the summer months. For these reasons, the MEFP-GEFS forecasts do not 

substantially improve upon the MEFP-GFS forecasts at low flows.  

At moderate and higher streamflow thresholds, a greater fraction of the total skill 

in the post-processed streamflow forecasts originates from the MEFP. Thus, at higher 

flows, the MEFP-GEFS forecasts generally improve upon the MEFP-GFS forecasts, 

particularly in CBRFC. During the wet season in CB- and CN-RFCs, and throughout the 

year in MA- and AB-RFCs, the MEFP-GEFS forecasts typically show similar skill to the 

MEFP-GFS forecasts for 1-2 days longer. For example, in CN-FTSC1, the MEFP-GEFS 

forecasts can detect streamflows above Cp=0.1 with equivalent skill to the MEFP-GFS 



64 of 139 
 

forecasts, but with an additional forecast lead time of ~2.5 days. However, when verifying 

the post-processed streamflow forecasts (against observed flows), the gains implied by 

the raw forecasts (against simulated flows) are not always realized by the EnsPost, 

particularly at high streamflow thresholds. Indeed, at early forecast lead times in AB- and 

MA-RFCs, and later forecast lead times in CB- and MA-RFCs, forecasts of moderate and 

high flows (Cp<0.1) show a decline in CRPSS following streamflow post-processing. This 

may originate from a lack of stationarity in the hydrologic biases. For example, in CB-

DOLC2, the hydrologic biases vary substantially between years, particularly during the 

snowmelt period (Appendix C). In some years, there are large discrepancies between the 

observed and simulated flows (e.g. 1986; Figure C05) while, in other years, the simulated 

flows closely match the observed flows (e.g. 1998; Figure C08). In practice, the hydrologic 

biases are often manifest as timing errors in the simulated flows, yet the EnsPost can 

only model these indirectly, as magnitude errors. In order to account for inter- and intra- 

annual variations in basin conditions, operational forecasters typically modify (“mod”) 

some combination of the inputs, parameters and states of the hydrologic models. 

However, adjusted simulations are not consistently archived by the RFCs. Also, they 

cannot be used operationally when the EnsPost is calibrated with raw simulations. Data 

assimilation is the preferred approach to adjusting model states (Liu et al., 2012). In 

principle, automated data assimilation would avoid these inconsistencies between the 

calibration and operational use of the EnsPost. It would also reduce the hydrologic biases 

in the raw simulations and account for non-stationarities in the hydrologic errors.    

In order to evaluate the quality of the HEFS and to establish a baseline for future 

enhancements, more comprehensive hindcasting and verification is needed. This should 

be conducted by all RFCs, for a range of forcing inputs, and for a broader range of river 

basins, including regulated rivers and outlets. Further work is needed to compare the 

streamflow forecasts from the HEFS against the RFC operational forecasts. While such 

comparisons are not straightforward (e.g. because the raw forcing data used by the HEFS 

is not used for operational forecasting), they are necessary to benchmark the HEFS and 

to show that, overall, the forecasts improve on existing products. In addition, there is a 

need to evaluate decision support systems and other applications that rely on the HEFS, 

such as water quality, ecology, river navigation, and water supply. Such applications will 
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show varying sensitivities to the HEFS forecasts and are necessary to demonstrate the 

wider, societal and economic, benefits of the HEFS and of ensemble forecasting more 

generally. In this context, there is a need for interdisciplinary and interagency 

collaborations on uncertainty and risk, as hydrologic forecasts are only one input to 

environmental decision making, and not necessarily the most important one. 
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7. Glossary of terms and acronyms 

ADJUST-Q – A procedure implemented within the CHPS to “blend” an operational 

streamflow forecast with the most recent streamflow observation. A rudimentary form 

of Data Assimilation that relies on hydrologic persistence 

Aggregation and Disaggregation – forming larger or smaller control volumes, 

respectively 

Bias – A systematic difference between an estimate of some quantity and its “true” 

(generally meaning observed) value 

BS – Brier Score. The average squared deviation between the predicted probabilities that 

a discrete event occurs (such as flooding) and the corresponding observed outcome 

(0 or 1) 

BSS – Brier Skill Score. The fractional reduction in the BS of one forecasting system 

relative to another. A value of 1 denotes perfect skill, 0 indicates that the forecasting 

systems are equivalent, and a negative value denotes a loss of skill 

Calibration – A process of estimating model parameters based on observations and 

corresponding (raw) predictions. In post-processing and verification, calibration has a 

second meaning, namely to correct for biases in ensemble forecasts by increasing 

their reliability. See Calibration-refinement  

Calibration-refinement – One factorization of the joint probability distribution of the 

forecasts and observations, obtained by conditioning on the forecast variable. 

Calibration is also known as reliability or Type-I conditional bias. See Likelihood-base-

rate 

Canonical Event – a partitioning of time scales in order to account for the varying 

information content of the different forcing inputs to MEFP (e.g., RFC QPF/QTF, GFS, 

and CFSv2)    
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CFSv2 – Climate Forecast System. A fully coupled model representing the interaction 

between the Earth's oceans, land and atmosphere that generates forecasts from 1-

270 days. See also: http://cfs.ncep.noaa.gov/  

CHPS – The Community Hydrologic Prediction System (pronounced “chips”)   

Climatology – The science that deals with average weather conditions over long periods. 

Climatology also refers the historical record of observations (e.g. mean areal averages 

of actual temperature and precipitation) used to drive a model 

Conditional bias – A bias in the forecasts over a subsample of the verification pairs. The 

subsample may originate from the application of one or more conditions to the paired 

data, such as observed values that exceed a given threshold. See Bias 

Continuous API – Continuous Antecedent Precipitation Index. An empirical hydrologic 

model used by the Middle Atlantic RFC  

Correlation coefficient – Pearson product-moment correlation coefficient. The 

covariance of two variables divided by the product of their standard deviations. A 

degree of linear association between two variables, with -1 and 1 denoting perfect 

negative and positive association, respectively, and 0 denoting the absence of a linear 

association (but not necessarily a non-linear association)  

CRPS – Continuous ranked probability score. The integral square difference between a 

forecast probability distribution and the observed outcome. It is typically averaged over 

many such cases (known as the “mean CRPS”) 

CRPSS – The continuous ranked probability skill score. The fractional reduction in CRPS 

of one forecasting system when compared to another (the reference or baseline). A 

value of 1 denotes perfect skill, 0 indicates that the forecasting systems are equivalent, 

and a negative value denotes a reduction in skill 

DA – Data Assimilation. A procedure for updating model states (and possibly other 

variables) with recent observations, thereby improving forecasts 

http://cfs.ncep.noaa.gov/
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Disaggregation – (see aggregation/disaggregation) 

Discrimination – Discrimination is an attribute of forecast quality that measures the 

sensitivity of the forecast probabilities to different observed outcomes. A forecasting 

system is discriminatory if its forecast probabilities vary for different observed 

outcomes. Discrimination is insensitive to conditional bias, i.e. a forecasting system 

may be discriminatory but have large Type-II conditional biases. A component of the 

Likelihood-base-rate factorization 

Ensemble Forecast – A collection of equally likely predictions of the future states of the 

atmosphere or hydrologic system, based on sampling of the different sources of 

uncertainty and propagating them through a modeling system (such as CHPS). An 

“ensemble trace” comprises two or more forecast lead times 

EnsPost – Ensemble Post-processor. A software tool and a statistical technique that 

accounts for hydrologic uncertainties and biases separately from the forcing 

uncertainties and biases 

ESP – Ensemble Streamflow Prediction. In NWS operations, this has the specific 

meaning of forcing the NWS River Forecast System with a sample of observations 

from the same dates in previous years, i.e. climatological forcing. Some RFCs have 

augmented the original ESP algorithms to account for additional information  

EVS – Ensemble Verification System. A software tool for verifying ensemble forecasts  

Forcings – The model inputs (e.g., precipitation and temperature) that drive or “force” a 

hydrologic model 

Forecast Issue Time – The date/time at which a forecast is issued, also known as “T0.” 

This differs from the Forecast Valid Time 

Forecast Lead time – The difference between the Forecast Valid Time and the Forecast 

Issue Time 

Forecast Valid Time – The time at which a forecast is valid 
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GEFS - Global Ensemble Forecast system – An ensemble forecasting system that uses 

an enhanced version of the GFS  

GFS – Global Forecast System. An operational NWP model developed by NCEP. The 

operational GFS is run four times daily, with forecasts out to 384 hours. The GFS was 

also “frozen” in 1997 (the “frozen GFS”) and used to generate hindcasts beginning in 

1979, which are used to calibrate the MEFP. The frozen GFS is a legacy model and 

operational forecasts will end in 2013. See GEFS also 

HEFS – Hydrologic Ensemble Forecast Service. Also, HEFSv1, the first version of the 

HEFS 

HEP – Hydrologic Ensemble Processor. A component of the HEFS implemented within 

the CHPS. The HEPS integrates a finite number of “equally likely” traces of 

precipitation and temperature through the NWS hydrologic models  

HEPS – Hydrologic Ensemble Prediction System. The general approach of which the 

HEFS is one example 

Hindcast – A retrospective forecast or reforecast. A forecast begins on each of several 

historical days. Reforecast is a term frequently used for weather models 

Lag/K – A simple technique for routing an inflow hydrograph downstream, originally 

developed as a graphical routing procedure. The outflow hydrograph comprises one 

or both of a time lag and attenuation (K) of the input hydrograph   

Likelihood-base-rate – The second of two factorizations of the joint probability 

distribution of the forecasts and observations, obtained by conditioning on the 

observed variable. See Calibration-refinement 

Long-range – The latter portion of the forecast time horizon, generally interpreted as 

more than ~14 days, where the forecast skill is lowest. See short-range and medium-

range also.  

MAP – Mean Areal Precipitation over a basin/watershed  
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MAT – Mean Areal Temperature over a basin/watershed   

Medium-range – The middle portion of the forecast time horizon, generally interpreted 

as ~5-14 days. See short-range and long-range also 

MEFP – Meteorological Ensemble Forecast Processor. A software tool and statistical 

technique that produces ensemble forecasts of temperature and precipitation using 

(single-valued) operational forecasts from NWP models. The forecast spread is 

derived from historical information about forecast errors 

MOS – Model Output Statistics. A statistical technique for bias-correcting weather and 

water forecasts (e.g. Hydrologic MOS or HMOS) 

NQT – Normal Quantile Transform. A transformation made to a data sample so that it 

follows a normal probability distribution (i.e. so that the histogram of values would 

appear normal) 

NWP – Numerical Weather Prediction 

NWSRFS – National Weather Service River Forecast System.  Replaced by CHPS 

NYCDEP – New York City Department of Environmental Protection 

PoD – Probability of Detection. The probability that a discrete event is detected by an 

ensemble forecasting system. An event is detected when the forecast probability 

exceeds a pre-defined threshold and the event occurs. In general, a high threshold 

will reduce the PoFD, but may also reduce the PoD. Hence, the PoD and PoFD are 

typically compared in a ROC diagram  

PoFD – Probability of False Detection. The probability that a discrete event is incorrectly 

detected by an ensemble forecasting system. An event is incorrectly detected when 

the forecast probability exceeds a pre-defined threshold and the event does not occur. 

In general, a low threshold will increase the PoD, but may also increase the PoFD. 

Hence, the PoD and PoFD are typically compared in a ROC diagram 
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PoP – Probability of precipitation. The probability that a non-zero precipitation amount will 

occur 

Probit – A non-linear plotting scale. The probit function is the quantile function (inverse 

of the cumulative distribution function) associated with the standard normal probability 

distribution 

Reforecast – See Hindcast. Commonly used in the atmospheric sciences 

Reliability (Type-I conditional bias or calibration) – A flood forecasting system is 

“reliable” if flooding occurs with the same relative frequency as the forecast 

probabilities imply. For example, flooding should occur 20% of the time when the 

forecast probability is 0.2. An attribute of forecast quality and a component of the 

Calibration-refinement factorization 

Resampled climatology – A procedure for generating an ensemble of precipitation and 

temperature forecasts from the MEFP using historical observations. The observations 

are resampled in a moving window either side of the forecast valid date across all 

historical years. A smooth probability distribution is then fitted to the resampled 

observations and ensemble members are derived from the fitted distribution. See 

sample climatology also 

Resolution – Should not be confused with spatial or temporal resolution. Resolution is 

an attribute of forecast quality that measures the sensitivity of the observed outcomes 

to differences in the forecast probabilities of those outcomes. Resolution is insensitive 

to conditional bias, i.e. a forecasting system may be resolved but unreliable.  A 

component of the Calibration-refinement factorization 

RME – Relative Mean Error. The average fractional bias of the ensemble mean forecast 

or the mean error of the ensemble mean, divided by the mean observed value. 

Positive, zero, and negative values denote a positive, zero, and negative bias, 

respectively  
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ROC – The Relative Operating Characteristic. Measures the ability of a forecasting 

system to correctly predict (or “discriminate”) the occurrence of an event (PoD) while 

avoiding too many incorrect forecasts when it does not occur (PoFD)   

SAC-SMA – The Sacramento Soil Moisture Accounting Model. A conceptual hydrologic 

model used in CHPS    

Sample climatology – an unconditional probability distribution, comprising all historical 

observations at a given space-time scale within a period of interest (e.g. 1985-1999). 

Unlike resampled climatology, the observations are not sub-sampled within a local 

(e.g. seasonal) window or smoothed by fitting a parametric distribution to the 

observations. In general, for variables that show a strong seasonality, resampled 

climatology is much more skillful than sample climatology  

Sharpness – Sharpness is an attribute of the forecast variable used in verifying ensemble 

forecasts. Specifically, it refers to the variability (e.g. measured by the variance) of the 

forecast probabilities.  Sharpness may be considered desirable insofar as decisions 

may be hampered if a forecast lacks sharpness (i.e. comprises a larger range of 

possibilities), but sharpness is not desirable at the expense of other attributes of 

forecast quality, such as reliability.  A component of the Likelihood-base-rate 

factorization 

Short-range – The early part of the forecast time horizon, generally interpreted as ~1-5 

days or less, where the forecast skill is highest. See medium-range and long-range 

also 

Simulation – A hydrologic prediction based on observed temperature and precipitation 

(as distinct from a forecast, which comprises forecast inputs) 

Skill – The fractional improvement of one forecasting system relative to a baseline. The 

measure used for skill could vary (e.g. the Brier Skill Score uses the Brier Score).  

SNOW-17 – Snow Accumulation and Ablation Model 17. A conceptual hydrologic model 

for snow processes, incorporated in the CHPS  
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SREF – Short-Range Ensemble Forecast (SREF) system. An NCEP model that issues 

short-range ensemble forecasts 

Support – Synonymous with scale. The temporal or spatial control volume. 

T0 – Forecast issue (System/Basis) Time. The time at which a forecast is produced 

Type-II conditional bias – A bias in the ensemble forecasts when viewed conditionally 

upon the observed variable. For example, a bias in the forecast ensemble mean when 

the observations exceed a given threshold. An attribute of forecast quality and a 

component of the Likelihood-base-rate factorization 

Uncertainty – An attribute of the Calibration-refinement factorization, not to be confused 

with the more general concept of “uncertainty.” Specifically, it refers to the variability 

(e.g. measured by the variance) of the observations 

UTC – Coordinated Universal Time, also known as Zulu (Z) time and synonymous with 

Greenwich Mean Time (GMT). Forecasts from the HEFSv1 are issued daily at 12Z   

WPC – Weather Prediction Center, formerly the Hydrometeorological Prediction Center 

XEFS – Experimental Ensemble Forecast System. The experimental precursor to the 

HEFS 
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9. Tables 

Table 1: characteristics of the study basins  

Characteristic 
ABRFC CBRFC CNRFC MARFC 

CBNK1 BLKO2 DRRC2 DOLC2 DOSC1 FTSC1 WALN6 CNNN6 

Lat (outlet) 37.1292 36.8086 37.6389 37.4725 39.71 40.22 42.1661 42.0628 

Long (outlet) -97.6017 -97.2775 -108.06 -108.497 -123.32 -123.63 -75.1403 -75.3747 

Lat (GFS) 37.5 37.5 37.5 37.5 40.0 40.0 42.0 42.0 

Long (GFS) -97.5 -97.5 -107.5 -107.5 -122.5 -122.5 -75.0 -75.0 

Lat (GEFS, week 1) 37.2171 36.7490 37.6853 37.6853 39.5578 40.026 42.3667 41.8985 

Long (GEFS, week 1) -97.5 -97.5 -108.2812 -108.2812 -123.2812 -123.75 -75.0 -75.0 

Lat (GEFS, week 2) 37.123 36.4991 37.7469 37.7469 39.6186 40.2426 42.1143 42.1143 

Long (GEFS, week 2) -97.5 -97.5 -108.125 -108.75 -123.125 -123.75 -75.0 -75.0 

Area (total, km2) 2057 4815 275 1305 1930 5457 860 1175 

Mean elev. (m) 115 140 2567 2115 340 247 180 157 

Annual P (mm) 935.68 1017.4 961.94 805.95 1682.36 1438.92 1038.27 1053.22 

Cp[P]=0.1 (mm) 7.96 8.61 7.38 5.74 13.87 13.42 9.09 9.15 

Cp[P]=0.05 (mm) 16.33 17.25 12.37 9.4 25.58 25.17 14.18 14.42 

Cp[P]=0.01 (mm) 37.12 41.23 24.79 19.73 54.33 51.74 29.97 29.12 

Runoff coefficient 0.12 0.14 0.45 0.42 0.42 0.53 0.57 0.58 

P/PE 0.74 0.78 0.93 0.78 1.92 2.17 1.49 1.51 

Qaction (mm/d) 3.403 7.789 N/A 9.872 N/A N/A 8.763 N/A 

Cp[Q>Qaction] 0.0117 0.00602 N/A 0.00073 N/A N/A ~0 N/A 

Qflood (mm/d) 5.924 10.585 N/A 14.789 N/A N/A 17.612 N/A 

Cp[Q>Qflood] 0.00484 0.00315 N/A ~0 N/A N/A ~0 N/A 

Cp[Q]=0.1 (mm/d) 0.031 0.024 0.133 0.094 0.017 0.015 0.15 0.106 

Cp[Q]=0.75 (mm/d) 0.255 0.224 1.248 0.916 2.182 1.842 1.959 1.936 

Cp[Q]=0.9 (mm/d) 0.554 0.615 3.946 2.92 4.87 5.537 3.716 3.654 

P = precipitation  
Cp = climatological probability  
PE = potential evaporation  
Q = streamflow  
Qaction = action stage in millimeters per day (mm/d) 
Qflood = flood stage in mm/d 
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Table 2: period of record used to calibrate the HEFS  

RFC/Basin MEFP-CLIM 

MEFP-GFS MEFP-GEFS 

EnsPost 

Bivariate1 Shuffle2 Bivariate Shuffle 

AB-BLKO2 1979-1999 1979-1999 1951-1999 1985-1999 1951-1999 1979-1999 

AB-CBNK1 1979-1999 1979-1999 1951-1999 1985-1999 1951-1999 1979-1999 

CB-DRRC2 1979-2003 1979-2005 1961-2003 1985-2005 1961-2003 1979-1999 

CB-DOLC2 1979-2003 1979-2005 1961-2003 1985-2005 1961-2003 1979-1999 

CN-DOSC1 1979-1998 1979-2005 1961-1998 1985-2009 1961-1998 1979-1999 

CN-FTSC1 1979-1998 1979-2005 1961-1998 1985-2009 1961-1998 1979-1999 

MA-WALN6 1979-1998 1979-1998 1950-1998 1985-1998 1950-1998 1979-1999 

MA-CNNN6 1979-1998 1979-1998 1950-1998 1985-1998 1950-1998 1979-1999 

1The bivariate probability distribution of the raw forecasts and observations, whose parameters are estimated from the paired data 

2The space-time co-variability of precipitation and temperature is estimated with the Schaake Shuffle, based on observed MAP/MAT 

Table 3: important characteristics of the first and second generation reforecasts  

Characteristic First generation (frozen GFS) Second generation (GEFS) 

Variables 
Total accumulated precipitation, min/max 
temperature 2m above the surface 

Total accumulated precipitation, min/max 
temperature 2m above the surface 

Ensemble members 15 members (1 control, 14 perturbed) 11 members (1 control, 10 perturbed) 

Horizontal resolution T62 (~200 km) 
T254 (~55 km) for 1-8 days, T190 (~70 km) for 
8 to 16 days 

Vertical resolution L28 (28 levels) L42 (42 levels) 

Forecast horizon 15 days 16 days 

Forecast time step 12 hours 6 hours 

Initialization cycle 00 UTC  00 UTC 

Period of record 1979 – 2006 (~27 yrs) 1985 – 2010 (~25 yrs) 

GFS version ~1997 9.0.1 

Availability NOAA/ESRL NOAA/ESRL 

Reference Hamill et al. (2006) Hamill et al. (2013) 
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10. Figures 

Figure 1: The eight study basins, comprising one upstream and one downstream basin in each of AB-, CB-, CN- and MA-RFCs.  
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Figure 2: Daily averages of temperature, precipitation and runoff by calendar month for each study basin. The meteorological variables 

are averaged over the upstream and downstream basins (weighed by basin area). 
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Figure 3: Correlation between the ensemble mean forecast and observed precipitation amounts by forecast lead time. The results 

are shown for the upstream and downstream basin in each RFC and comprise the raw GEFS reforecasts (GEFS-RAW) and the MEFP 

outputs with forcing inputs from the GFS, GEFS and resampled climatology (CLIM).  
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Figure 4: Relative mean error (RME) of the MEFP precipitation forecasts with forcing inputs from the GFS, GEFS and resampled 

climatology (CLIM). The results are shown by forecast lead time for the upstream and downstream basin in each RFC. 
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Figure 5: Mean Continuous Ranked Probability Skill Score (CRPSS) of the MEFP precipitation forecasts with forcing inputs from the 

GFS, GEFS and resampled climatology (CLIM). The results are shown by forecast lead time for the upstream and downstream basin 

in each RFC. The reference forecast is sample climatology.  
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Figure 6: Mean Continuous Ranked Probability Skill Score (CRPSS) of the MEFP temperature forecasts with forcing inputs from the 

GFS, GEFS and resampled climatology (CLIM). The results are shown by forecast lead time for the upstream and downstream basin 

in each RFC. The reference forecast is sample climatology. Note the discontinuity on the range axis. 
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Figure 7: Correlation between the ensemble mean forecast and observed precipitation amount at increasing thresholds of observed 

precipitation. The results are shown for the raw GEFS reforecasts, the MEFP-GFS forecasts and the MEFP-GEFS forecasts. The 

precipitation thresholds are expressed as climatological probabilities and plotted on a probit scale (but labeled with actual probability). 
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Figure 8: Calibration-refinement factorization of the CRPSS for the MEFP-GEFS precipitation forecasts and the corresponding MEFP-

GFS forecasts (dashed). The results are shown for the downstream basins and the reference forecast is sample climatology. The 

precipitation thresholds are expressed as climatological probabilities and plotted on a probit scale (but labeled with actual probability). 
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Figure 9: Reliability diagrams for the MEFP-GEFS precipitation forecasts at the downstream basin in each RFC. The results are 

shown for selected precipitation thresholds, which are expressed as climatological exceedence probabilities. The solid lines comprise 

the daily accumulation with a forecast lead time of 1-2 days. The dashed lines comprise the average reliability of the four, six-hourly, 

accumulations from 1-2 days at the probability of precipitation (PoP) threshold. 
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Figure 10: Relative Operating Characteristic (ROC) curves for the MEFP-GEFS precipitation forecasts and the corresponding MEFP-

GFS forecasts (dashed). The results are shown at a forecast lead time of 1-2 days for the downstream basin in each RFC and for 

selected precipitation thresholds, which are expressed as climatological exceedence probabilities. The ROC curves were fitted under 

an assumption of bivariate normality between the empirical pairs of PoD and PoFD (shown as dots). 
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Figure 11: Box plots of errors (forecast - observed) in the MEFP-GFS precipitation forecasts (left column) and the corresponding 

MEFP-GEFS forecasts (right column). The results are shown at a forecast lead time of 3-4 days for the downstream basin in each 

RFC. 
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Figure 12: Mean CRPSS of the MEFP-GEFS precipitation forecasts and the corresponding MEFP-GFS forecasts (dashed) at selected 

forecast lead times. The reference forecast is sample climatology. The results are shown for the downstream basin in each RFC and 

for the wet and dry seasons, as well as the overall period. The precipitation thresholds are expressed as climatological probabilities 

and plotted on a probit scale (but labeled with actual probability). 
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Figure 13: Mean CRPSS of the MEFP-GEFS temperature forecasts and the corresponding MEFP-GFS forecasts (dashed) at selected 

forecast lead times. The reference forecast is sample climatology. The results are shown for the downstream basin in each RFC and 

for the wet and dry seasons, as well as the overall period. The precipitation thresholds are expressed as climatological probabilities 

and plotted on a probit scale (but labeled with actual probability).  
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Figure 14: Average net gain in forecast lead time for the MEFP-GEFS precipitation forecasts when compared to the MEFP-GFS 

forecasts. The results are shown for the wet and dry seasons, as well as the overall period. The net gain in forecast lead time was 

averaged across lead times of 1-7 days and is shown for three verification metrics. The BSS comprises a threshold of Cp=0.1. 
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Figure 15: An illustration of the gain in forecast lead time, t, for one verification time-series, mh(t), relative to another, mg(t). The gain 

in lead time is defined as the difference in time, t, from mg(t1) until an equivalent value is reached on time-series, mh(t). In practice, 

t may comprise several whole time increments in addition to a partial increment. A similar procedure is used to define a reduction in 

forecast lead time. The average net gain is defined as the average t across several start times (t1,t2,…,tn).     
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Figure 16: Average net gain in forecast lead time for the MEFP-GEFS temperature forecasts when compared to the MEFP-GFS 

forecasts. The results are shown for three verification metrics and for the wet and dry seasons, as well as the overall period. The net 

gain in forecast lead time was averaged across lead times of 1-7 days. The BSS comprises a threshold of Cp=0.9. 
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Figure 17: Relative mean error (RME) of the MEFP-GEFS, MEFP-GFS and MEFP-CLIM streamflow forecasts against simulated 

streamflow. The results are shown for the upstream and downstream basin in each RFC and for the wet and dry seasons, as well as 

the overall period.  
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Figure 18: Correlation of the ensemble mean forecast and simulation for the MEFP-GEFS, MEFP-GFS and MEFP-CLIM streamflow 

forecasts. The results are shown for the upstream and downstream basin in each RFC and for the wet and dry seasons, as well as 

the overall period. 
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Figure 19: Mean CRPSS of the MEFP-GFS and the MEFP-GEFS streamflow forecasts versus the MEFP-CLIM forecasts. The results 

are shown for the upstream and downstream basin in each RFC and for the wet and dry seasons, as well as the overall period. 
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Figure 20: Relative mean error (RME) of the MEFP-GEFS, MEFP-GFS and MEFP-CLIM streamflow forecasts against simulated 

streamflow. The results are shown for the upstream and downstream basin in each RFC and at selected forecast lead times. The 

streamflow thresholds are expressed as climatological probabilities and plotted on a probit scale (but labeled with actual probability). 
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Figure 21: Correlation of the ensemble mean forecast and simulated streamflow for the MEFP-GEFS, MEFP-GFS and MEFP-CLIM 

forecasts. The results are shown for the upstream and downstream basin in each RFC and at selected forecast lead times. The 

streamflow thresholds are expressed as climatological probabilities and plotted on a probit scale (but labeled with actual probability). 
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Figure 22: Brier Skill Score (BSS) of the MEFP-GEFS and MEFP-GFS streamflow forecasts versus the MEFP-CLIM forecasts. The 

results are shown for the upstream and downstream basin in each RFC and at selected forecast lead times. The streamflow thresholds 

are expressed as climatological probabilities and plotted on a probit scale (but labeled with actual probability). 



106 of 139 
 

Figure 23: Box plots of errors (forecast - simulated) in the MEFP-GFS streamflow forecasts (left column) and the corresponding 

MEFP-GEFS forecasts (right column). The results are shown at a forecast lead time of 4-5 days for the downstream basin in each 

RFC. 
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Figure 24: Relative mean error (RME) of the raw streamflow forecasts with MEFP-GEFS forcing (GEFS) and the corresponding post-

processed streamflow forecasts (GEFSPOST). The results are also shown for the post-processed streamflow forecasts with MEFP-

GFS forcing (GFSPOST).  
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Figure 25a: Mean CRPSS of the bias-corrected MEFP-GEFS and MEFP-GFS streamflow forecasts against the raw streamflow 

forecasts with forcing inputs from MEFP-CLIM. The CRPSS is decomposed into contributions from the meteorological forcing and the 

EnsPost. The results are shown for the upstream basin in each RFC and for the dry and wet seasons, as well as the overall period. 
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Figure 25b: Mean CRPSS of the bias-corrected MEFP-GEFS and MEFP-GFS streamflow forecasts against the raw streamflow 

forecasts with forcing inputs from MEFP-CLIM. The CRPSS is decomposed into contributions from the meteorological forcing and the 

EnsPost. The results are shown for the downstream basin in each RFC and for the dry and wet seasons, as well as the overall period. 
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Figure 26: Average net gain in forecast lead time for the bias-corrected streamflow forecasts with forcing inputs from the MEFP-GEFS 

versus the MEFP-GFS. The results are shown for three verification metrics and for the wet and dry seasons, as well as the overall 

period. The net gain in forecast lead time was averaged across lead times of 1-7 days. The BSS comprises a threshold of Cp=0.1. 
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Figure 27: Calibration-refinement factorization of the BSS for the raw streamflow forecasts with GEFS forcing (GEFS) and for the 

post-processed streamflow forecasts with MEFP-GFS forcing (GFSPOST) and MEFP-GEFS forcing (GEFSPOST). The reference 

forecast is MEFP-CLIM. The results are shown for the downstream basin in each RFC at a forecast lead time of ~5 days. 
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Figure 28: Reliability diagrams for the post-processed MEFP-GEFS streamflow forecasts at the downstream basin in each RFC. The 

results are shown for selected streamflow thresholds, which are expressed as climatological exceedence probabilities, and for a 

forecast lead time of ~2 days.   



113 of 139 
 

Figure 29: Relative Operating Characteristic (ROC) curves for the post-processed MEFP-GEFS streamflow forecasts. The results 

are shown at a forecast lead time of ~2 days for the downstream basin in each RFC and for selected streamflow thresholds, which 

are expressed as climatological exceedence probabilities. The ROC curves were fitted under an assumption of bivariate normality 

between the empirical pairs of PoD and PoFD (shown as dots). 
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Figure 30: Mean CRPSS of the raw streamflow forecasts with GEFS forcing (GEFS) and for the post-processed streamflow forecasts 

with MEFP-GFS forcing (GFSPOST) and MEFP-GEFS forcing (GEFSPOST). The reference forecast is MEFP-CLIM. The results are 

shown for the downstream basin in each RFC and at selected forecast lead times.  
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APPENDIX A: The Hydrologic Ensemble Forecast Service (HEFS) 

A detailed description of the Hydrologic Ensemble Forecast Service (HEFS) can 

be found in Seo et al. (2010) and Demargne et al. (2014), and only a brief outline is 

provided here. Let fq denote the observed streamflow at some future times and cq  

denote the observed streamflow up to the current time. Omitting the random variables for 

simplicity, the conditional distribution, 1( | )f cf q q , may be factored into a “raw” streamflow 

forecast, 3( | )q qr cf , and an “adjusted” streamflow forecast, given the raw forecast, 

2( | , )q q qf c rf  

1 2 3( | ) ( | , ) ( | ) , q q q q q q q qf c f c r r c rf f f d

RawTotal Adjusted

                               (A1) 

where qr  denotes the raw model forecast (or the simulated streamflow if the adjustment 

can be made independently of forecast lead time). The future (observed) streamflow is 

then estimated by factoring out the raw forecast from the adjusted forecast. The raw 

forecast, 3( | )q qr cf , may be further separated into specific sources of uncertainty in the 

hydrologic modeling,  

 
3 4 5 6 7( | ) ( | , , , ) ( | , , ) ( | , ) ( | ) , q q q m i p q m i p q p i q i q m i pr c r f c f c f c f c ff f f f f d d d   (A2) 

where i  denotes the initial conditions, p  denotes the model parameters and fm  denotes 

the meteorological forcing. Although updating with streamflow and other observations 

(e.g. soil moisture) may be desirable (Liu et al, 2012), this is not currently supported by 

the HEFS.  

The conditional distribution, 4( | , , , )q m i p qr f cf , is estimated with the HEP, which 

integrates the adjusted forcing from the MEFP through the hydrologic models. The MEFP 

generates precipitation and temperature forcing conditionally upon a raw forecast (Wu et 

al., 2011). The raw forcing may comprise the RFCs operational quantitative precipitation 

and temperature forecasts or the ensemble mean of NCEP’s GFS, among others. For 
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gridded meteorological forecasts, the MEFP uses the raw forecast whose grid node is 

nearest to the basin centroid. In forming predictors from the raw forecasts, the MEFP 

separates the forecast horizon into multiple temporal scales. At each scale, the predictors 

are aggregated into time periods or “canonical events” that reflect the underlying skill in 

the raw forecasts at different aggregation periods. Thus, while short-range forecasts may 

be skillful at hourly or daily aggregations, long-range forecasts may benefit from 

predictors formed at larger (e.g. monthly) aggregations. By separately factoring 

precipitation occurrence and amount, the MEFP allows for a highly parsimonious model 

of fm  (Wu et al., 2011). The space-time covariances in fm are modeled with the 

Schaake Shuffle, which re-orders the ensemble members to match the rank ordering of 

observations from similar dates in the past (see Clark et al., 2004 and Wu et al., 2011 for 

details). Currently, the uncertainties in the initial conditions and parameters of the 

hydrologic model are not modeled separately (see below).  

The raw streamflow forecast is then adjusted by the EnsPost to account for any 

“residual” hydrologic uncertainty, not included in the raw forecast (Seo et al., 2006). This 

adjustment is factored into the conditional distribution, 2( | , )q q qf c rf . The structure and 

modeling of the adjusted forecast will depend on the sources of uncertainty that are 

addressed in the raw forecast. For example, without factoring any sources of uncertainty 

into 3( | )q qr cf , the adjusted forecast, 2( | , )q q qf c rf  may be approximated with a simple 

model of the total uncertainty, such that the contributions from ( , , fi p m ) are lumped into 

2( | , )q q qf c rf . Regonda et al. (2013) describe one approach to lumped modeling of

2( | , )q q qf c rf , known as “Hydrologic Model Output Statistics” (HMOS). Conversely, 

2( | , )q q qf c rf  would be structureless if the hydrologic uncertainties were properly 

accounted for in 3( | )q qr cf . In practice, a compromise is sought in the HEFS whereby the 

hydrologic uncertainties ( ,i p ) are lumped into the adjusted forecast, 2( | , )q q qf c rf , but 

the critically important meteorological uncertainties, ( fm ), are modeled separately by the 

MEFP,  
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3 4 5( | ) ( | , ) ( ) . q q q q m m mr c r c f f ff f f d

Raw Raw | Forcing Forcing

                                 (A3) 

Thus, while the hydrologic uncertainties are not factored into specific contributions, 

their aggregate effects on 2( | , )q q qf c rf  are modeled by the EnsPost in a highly simplified 

way (Seo et al., 2006). Here, the model predicted and observed streamflows are 

transformed using the Normal Quantile transform (NQT; Kelly and Krzysztofowicz, 1997) 

and their joint distribution modeled as bivariate normal. In order to account for the 

temporal dependencies, future streamflows are assumed conditionally independent of 

past streamflows, given the present (Markov property) and an AR(1,1) structure used to 

model these dependencies (Seo et al., 2006). In modeling the residual uncertainty, the 

EnsPost assumes that the forcing ensembles are unconditionally and conditionally 

unbiased and that the hydrologic biases and uncertainty are independent of forecast lead 

time. Specifically, the model predicted streamflow, qr , in Eqn. A1 is substituted with 

simulated streamflow.  This is reasonable in the context of the HEP, but implies that any 

residual biases in the meteorological forcing will also factor in the post-processed 

streamflow.     

While the HEFS distinguishes between the meteorological and hydrologic 

uncertainties, further lumping of these uncertainties is not necessarily undesirable. 

Rather, modeling of 7 ( )ff m  is complicated by the “mixed” nature of precipitation, both in 

terms of precipitation occurrence and amount and liquid versus solid precipitation. It is 

also complicated by the sensitivity of streamflow to the correct modeling of space-time 

and cross-variable relationships in the forcing. The Schaake Shuffle is often used to 

capture these dependencies (Clark et al., 2004; Kang et al., 2010; Wu et al., 2011), but 

has several limitations. An intermediate solution between lumped modeling of the forcing 

contribution in 2( | , )q q qf c rf  and posterior modeling of 5( )ff m  may involve an a priori 

estimate of 5( )ff m  with a raw ensemble of meteorological forcing, together with a 

posterior adjustment to the streamflow for any residual forcing bias and uncertainty; that 

is, by substituting the raw forcing for fm  in Eqn. A3. This approach is used operationally 
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by the European Floods Awareness System (EFAS; Thielen et al., 2009) and is currently 

being evaluated by the NWS Eastern Region as part of their Meteorological Model 

Ensemble Forecast System (MMEFS; Philpott et al., 2012). 

The total uncertainty in Eqn. A1 is approximated, numerically, by integrating a finite 

number of “equally likely” ensemble members through the operational forecasting system. 

The HEFS is embedded within the Community Hydrologic Prediction System (CHPS), 

which provides the operational forecasting environment. A phased implementation of the 

HEFS is currently underway, with the first version (HEFSv1) due to be implemented 

across all RFCs by 2014. In support of this phased implementation, hindcasting and 

verification is being conducted at ~30 river basins in five RFCs (partly described here). 

The hindcasts are also being used by the NYCDEP in their Operational Support Tool 

(OST) for managing water supply to NYC. 
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APPENDIX B: Verification metrics 

a. Relative mean error 

The relative mean error (RME), or relative bias, measures the average difference 

between a set of forecasts and corresponding observations as a fraction of the average 

observation. Here, it measures the average difference between the ensemble mean 

forecast, y , and the corresponding observation, x, over n pairs of forecasts and 

observations 

 

n

i i

i 1
n

i

i 1

( )y - x

RME =

x








.                                                     (B1) 

 

The RME provides a measure of relative bias in the ensemble mean forecast, and 

may be positive, zero, or negative. A positive RME denotes overforecasting and a 

negative RME denotes underforecasting (insofar as the ensemble mean should equal the 

observed value).  

b. Brier Score and Brier Skill Score  

The Brier Score (BS; Brier, 1950) quantifies the mean square error of n forecast 

probabilities that Q exceeds q 

          
1

i i i i

n 2
i

X Y X i Y

i

1,Y > q;       
1BS = F q - F q ,  where F q = Pr X > q and F q =

n 0, otherwise,





    

(B2)

 

where  
iYF q  and  

iXF q  denote the ith observed and forecast probabilities that Q 

exceeds q, respectively. By conditioning on the forecast probability, and partitioning over 

J categories, the BS is decomposed into the calibration-refinement measures of Type-I 

conditional bias (CB) or ‘reliability’ (REL), resolution (RES), and uncertainty (UNC) (see 

Bradley et al., 2004 also) 
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          2

1 1

( ) .
j j j

J J2 2

j X Y j Y Y Y

j j

1 1BS = N F q - F q N F q - F q q
n n


 

  

UNCREL RES
        (B3)

 

Here,  YF q  represents the average relative frequency (ARF) with which the 

observation exceeds q.  The term  
jYF q  represents the conditional observed ARF, given 

that the forecast probability falls within the jth category, which occurs Nj times. 

Normalizing by the climatological variance,  2

Yσ q , leads to the Brier Skill Score (BSS) 

     2 2 2

Y Y Y

BS RES REL
BSS = 1- = - .

σ q σ q σ q
                                     (B4) 

By conditioning on the K=2 two possible observed outcomes, {0,1}, the BS is 

decomposed into the likelihood-base-rate measures of Type-II CB (T2), discrimination 

(DIS), and sharpness (SHA), 

 

          2

1 1

( ) .
k kk X X

K K2 2

k X Y k X

k k

1 1BS = N F q - F q N F q - F q q
n n


 

  

T2 DIS SHA

      

 (B5)

 

where  
kXF q  denotes the conditional ARF that X is forecast to exceed q given 

that Y is observed to exceed q (k=1) or observed to not exceed q (k=2), where Nk is the 

conditional sample size for each case, and  XF q denotes the unconditional ARF. Here, 

 
kYF q  denotes the conditional ARF that Y is observed to exceed q. Since  

kYF q  is either 

zero or one, the Type-II CB can only be zero if the forecasts are perfectly sharp. 

Conditionally upon the observed outcome, the BSS is given by, 

    
     2 2 2

Y Y Y

SHA DIS T2
BSS = 1- + - .

σ q σ q σ q
                                          (B6) 
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c. Continuous Ranked Probability Score and skill score 

The Continuous Ranked Probability Score (CRPS) measures the integral square 

difference between the cumulative distribution functions of the observed and predicted 

variables 

 
2

( ) ( ) .X YCRPS = F q F q dq                                             (B7) 

The mean CRPS comprises the CRPS averaged across n pairs of forecasts and 

observations. As in Eqn. B3, although with a somewhat different interpretation, the CRPS 

can be factored into a combination of reliability, resolution and uncertainty (see Hersbach, 

2000). The Continuous Ranked Probability Skill Score (CRPSS) is a ratio of the mean 

CRPS of the main prediction system, CRPS , and a reference system, REFCRPS  

REF

REF

CRPS -CRPS
CRPSS =

CRPS
.                                               (B8) 

d. Relative Operating Characteristic 

The Relative Operating Characteristic (ROC; Green and Swets, 1966) measures 

the ability of a forecasting system to correctly predict the occurrence of an event 

(Probability of Detection or PoD) while avoiding too many incorrect forecasts when it does 

not occur (Probability of False Detection or PoFD).  For probability forecasts, this trade-

off is expressed as a probability threshold, d, at which the forecast triggers a decision.  

The ROC plots the PoD versus the PoFD for all possible values of d in [0,1].  For a 

particular threshold, the empirical PoD is 
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where I denotes the indicator function. The empirical PoFD is 
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Here, the relationship between the PoD and PoFD is assumed bivariate normal 

(Hanley, 1988; Metz and Pan, 1999)  

  -1 PoD PoFD PoFD

PoD PoD

μ - μ σ
PoD=Φ a+bΦ PoFD  where a=  and b= ,

σ σ
              (B11) 

and Φ is the cumulative distribution function of the standard normal distribution.  The 

means of the PoD and PoFD are PoDμ  and PoFDμ , respectively, and their corresponding 

standard deviations are PoD  and PoFD . Calculation of the fitted ROC amounts to 

estimating the parameters, a and b, of the linear relationship between the PoD and the 

PoFD in normal space, for which Ordinary Least Squares regression was used. 
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APPENDIX C: Event-based analysis of the streamflow forecasts 

Paired streamflow forecasts and observations are presented for selected years in 

the downstream basin of each RFC. The results comprise the bias-corrected streamflow 

forecasts with forcing inputs from the MEFP-GFS and MEFP-GEFS. The results are also 

shown for the raw streamflow forecasts with climatological forcing. The plots include the 

single-valued streamflow observations and simulations, together with the ensemble range 

of the corresponding streamflow forecast (maximum – minimum value) on each forecast 

valid date during one calendar year. The results are shown at forecast lead times of ~18-

42 hours, ~42-66 hours, ~162-186 hours and ~306-330 hours and for calendar years 

1986, 1990, 1994, and 1998. The plots support visual inspection of the HEFS streamflow 

forecasts, including timing and amplitude errors for specific hydrologic events and in 

different portions of the streamflow hydrographs. However, some care (and subjective 

interpretation) is needed in separating between random and systematic behaviors over a 

small number of hydrologic events. Thus, the plots should only be viewed as 

supplementary to the verification results presented in Section 5 of this report. 
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Figure C01: Mean and range of the streamflow forecasts in BLKO2. The results are shown by forecast valid date in 1986 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST). 
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Figure C02: Mean and range of the streamflow forecasts in BLKO2. The results are shown by forecast valid date in 1990 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST). 
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Figure C03: Mean and range of the streamflow forecasts in BLKO2. The results are shown by forecast valid date in 1994 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST). 



127 of 139 
 

Figure C04: Mean and range of the streamflow forecasts in BLKO2. The results are shown by forecast valid date in 1998 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST). 
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Figure C05: Mean and range of the streamflow forecasts in DOLC2. The results are shown by forecast valid date in 1986 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST). 
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Figure C06: Mean and range of the streamflow forecasts in DOLC2. The results are shown by forecast valid date in 1990 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST). 
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Figure C07: Mean and range of the streamflow forecasts in DOLC2. The results are shown by forecast valid date in 1994 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST). 
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Figure C08: Mean and range of the streamflow forecasts in DOLC2. The results are shown by forecast valid date in 1998 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST). 
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Figure C09: Mean and range of the streamflow forecasts in FTSC1. The results are shown by forecast valid date in 1986 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST). 
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Figure C10: Mean and range of the streamflow forecasts in FTSC1. The results are shown by forecast valid date in 1990 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST). 
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Figure C11: Mean and range of the streamflow forecasts in FTSC1. The results are shown by forecast valid date in 1994 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST). 
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Figure C12: Mean and range of the streamflow forecasts in FTSC1. The results are shown by forecast valid date in 1998 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST).). 
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Figure C13: Mean and range of the streamflow forecasts in CNNN6. The results are shown by forecast valid date in 1986 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST). 
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Figure C14: Mean and range of the streamflow forecasts in CNNN6. The results are shown by forecast valid date in 1990 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST). 
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Figure C15: Mean and range of the streamflow forecasts in CNNN6. The results are shown by forecast valid date in 1994 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST). 
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Figure C16: Mean and range of the streamflow forecasts in CNNN6. The results are shown by forecast valid date in 1998 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology (CLIM). The 

post-processed streamflow forecasts comprise forcing from the MEFP-GFS (GFSPOST) and the MEFP-GEFS (GEFSPOST). 


